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APPENDIX

Introduction

This appendix has been included as an addition to the manusl in an
attempt to better acquaint the user with 'what TRANSPORT does', and with the
notation and mathematical formalism used in a8 TRANSPORT calculation.

The first section (Beam Transport Optics - Part I and Part II) is a
rewrite of two lectures given to members of the SLAC technical staff on the
elementary matrix algebra of opties. We include them here for the benefit of
the new user who may need a brief refresher course on charged particle optics
and/or has a need to become familiar with TRANSPORT notation. The new user
should also acquaint himself with the contents of the books and other publications
listed under 'references' at the end of the manual. References 1 and 2 are
essential if the user is to obtain the maximum value from TRANSPORT.

The second section of this appendix was written to introduce the mathe-
matical formalism of the first-order R matrix and Sigma matrix (phase ellipsoid)
beam optics used in a TRANSPORT calculation and to correlate this with the
printed output.

Section three discusses second-order calculations and, in particular, a
procedure for calculating the "Sextupole" strengths required to minimize and/or
eliminate second-order aberrations in a beam transport system.

Section four is a brief derivation of the mathematical formalism used by
TRANSPORT for calculating magnet alignment tolerances.

Section five deals with the first-order parameter optimization code of
TRANSPORT and includes a brief explaration of the covariance matrix that is

printed after each first-order fit routine.
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BEAM TRANSPORT OPTICS
Section I

Beam Trancport Optics - Part I

(K. L. Brown)

1. Introduction

A convenient starting point for this lecture is the equation relating

the magnetic rigidity of a particle (Bp ) to the particle momentum P

10%
Bp = P or Bp=33.35%6P
2.99793
where
B 1s in kilogauss
P is the bending radius in meters
P is the particle's momentum in BeV/ec.

A note of caution: When using this equation for a TRANSPORT calculation,
it is necessary to use at least 5 significant figures for the constant to

avoid round~off errors in the reaiout.

2. Geometric Light Optics vs. Magnetic Optics

To relate geometrical light optics o charged particle optics, we
begin vith the thin lens. Figure 1 shows a thin lens with a ray leaving
a focal point A at an angle © o’ impinging on the lens at X, . As the
rey leaves the lens, it is at xl and going toward a focal point B at an

angle of ©
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61

7?

Figure 1

Thin lens optics says that l/p + l/q = l/f . Using this equation it is
readily verified that the matrix transformation for the lens action between

principal planes is

The transformation for a drift distance L is

— % — >

x 7]
%

Figure 2

X, 1 L xo
61 0 1 eo

Note that the determinant of the metrix in both examples is equal to
unity. This is always the case as will be proved formally later. That this
is so is a manifestation of Liocuville's theorem of conservation of phase

space area.
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Consider now a thick lens, as 1llustrated in Figure 3.

Figure 3

If Ll is the object distance to the face of the lens and L2 is the

corresponding image distance, then, in general,

1 + #1/f .
/v +1/L, #1/
If, however, we introduce two planes P and P2 located at a distance
1
2z and z from the entrance and exit faces of the lens, it is always
1 2
possible to find a z1 and a 22 such that the equation
1/p + 1/q = 1/f is valid.

where

p=L +2

[l
=
+
3]

q

When this is so, Pl and P2 are called the principal planes of the lens.

Now, relating the above statement to matrix formalism, the matrix
transformation for a thick lens between the input and output faces of the

lens has the general form:



X R R X
1 11 1z (e}
e R R ; 5]
1 21 2z, e}
- -— — — —

where as before the det R=1 . For a general transformation, Rl2

necessarily equal to 0 and Rl:L and R22 are not necessarily equal to

The principal planes may oce located by the transformation

— P — —

-
R R 1 2 |1 0 1 2
11 1 2 1
R R 0 1 1/ 1 0 1 _J
21 22

Using the relation

n

[}
N
.
]
N
]
(@]

= 1 (the unit matrix)
0 1 o) 1 0 1

the previous equation may be manipulated into the form

R, 2.R, [_l 25| 1By R . 1
R._-zR_ |-z (R _-zR ) |= ’
11 2 21 p=4 22 1 21
R , R__-z_R L.? 1R R 0
21 e2 1 21 H 21 22

Solving for z_ and z,, we find

1
R__ -1
22
Zl =
R21
R, -1
z I e ———
2 R

is not

(@)

1.
1 0
-1/f 1
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where z1 and 22 are the location of the principal planes as shown in

Fig. 3. The principal planes of any system may be determined by this method.

Note that R21 = -l/f is not affected by the transformation and that
the upper right hand matrix element is zero if det R =1 . The principal
planes may coincide, may be close together, be far apart; or in many systems,
may be located external to all of the elements comprising the system. An

example of the latter case is a quadrupole peir.

Some examples of principal plane locations for simple systems follow:

A quadrupole singlet:

P P
1 2

Figure &

The principal planes in a single quadrupole are located very close
to each other and very near the center of the lens. As such, a quadrupole
singlet may be considered as a thin lens if the object and image distances
are measured to the center of the lens.

A simple wniform-field 1 P2
vedge magnet:

Flgure 5
If the optic axis enters and exits perpendicularly to the pole boundary,

the principal planes are at the "center" of the magnet, as shown in Figure 5.
From this, we conclude that a simple wedge bending magnet may be considered
as a "thin" lens if the object and image distances are measured to the lens

center O .
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A quadrupole pailr:

defocusing focusing
<7 . A X
X& O |

A /r
> plane Figure 6
focusing defocusing
pﬁl N, N7
[ \ [ ,
A A B M>1
P, P, (+) (=)
Y _plane Figure 7

For a gquadrupole pair, the principal planes are displaced toward and,

usually, beyond the focusing element of the pair, as shown in Figures € and 7.

For any lens system, no matter how many elements are invclved

I N

obJject image
l.( P q ),'
Figure 8 Py Py

1/p + 1/q = 1/f , if p and q are distances measured to the principal

planes. Then the magnification between object and image planes is M = q/p .

Since the quadrupole pair is different in the two planes, (x) and (y),
both situations must be examined. The interesting result turns out to be
that in the x plane, the principal planes are to the right (Figure 6) and
in the y plane, they are to the left (Figure 7). Therefore, in the y plane
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the magnification is greater than 1, and in the x plane the magnification

is less than 1. Typically, for a quadrupole pair the ratio of

M /Mx

may be as high as 20:1 and such cases can be disastrous if not recognized
beforehand. This is a first-order image distortion. For example, if the

source is a circular spot at A , the image at B will appear as a long

thin line.

The situation is different for the

Quadrupole triplet:

e e %
R\ VA

\ \
x plane Figure 9

-2, T—ﬂy —

47 )
VA

Y _plene Figure 10
In the symmetric triplet, as shown in Figures 9 and 10, the principal
planes are located symmetrically about the center of the system, although

X
are used. The magnification is approximately equal in both planes; con-

sequently, a circular spot can be imaged through the éystem with much less
first-order image distortion than is the case for the doublet.

z_ > zy . This is, perhaps, the dominant reason why quadrupole triplets
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3. Introduction of Momentum Dispercion into the Matrix Formalism

The foregoing discussion and examples dealt only with monoenergetic
first-order effects. First-order dispersion may be taken into account ty
introducing & 3 X 3 matrix as follows:

Consider two particles of momentum po and po + Ap passing through

the midplane of a static magnetic field, as illustrated in Figure 11.

3

Figure 11

Since the scalar momentum of a particle is constant in a stetic magnetic

field, the transport equation from A to B may be expressed as:

ERE 1 [ ]

u

11 12 0
1
0 |=|Bar | R | @ %
3 0 o} 1 6
L. JB L 4 L _a
where
5 = 29/p
d = the spatial momentum dispersion
d' = the derivative of the dispersion (the angular
manentum disparsion)
and 1 = a carrying term to generate a square matrix and

denote a constant mowmentum.
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The determinant of the matrix ]R! is equal to 1 as for the 2 x 2
matrix. However, because of the zeros in the bottom row, the fact that
|R| = (R, R__-R _R_) =1 only checks the 2 X 2 matrix and not the

11 a2
terms containing d and 4!

Consider now a general system from an object point A to an image point

*1=0 for all ©
o
B

Figure 12

The above matrix equation is still valid for midplane trajectories.
If A 1is a source point and if R,=0 (i.e., x 1is independent of GO),
then B 1is an image point for monoenergetic particles.

Under these circumstances:

R:L:l = Mx is the X plane magnification
R__ =+ 1/M_because det R = 1
22 X
and R =-1/f
21 b'e
In fact, R21 = - l/fx for the system between A and B , even if

A and B are not foci.

It is now convenient to develop a more general definition of the matrix
elements Rij and, at the same time, introduce the first-order matrix
transformation for the y(non-bend) plane. Consider, again, a general system
where the projection of the central trajectory is allowed to bend. in the
x plane but is a straight line in the y plane. The x plane and y plane matrix

transformations may be written as follows:
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For the x plane x1 =R_ x

x o
/ / '
x, cx\t) sx(t) dx\t) X
'/ ‘f l,
or 6, | = Cx“t) Sx‘t) dx\t) 8,
) o]

Similarly, for the y plane, yl =R vy

y
vy | fe0) |00 [,
or = 1 1
¢ cy( t) sy( t) &

The ¢ and s functions may be defined in terms of their initial conditioas.

o}

Let T be the distance measured along the

A( T=0)

Figure 13
central trajectory. Then:
% 1
s(0) =0 5 (0) =1 where s (1) = Qg%ll
1 [3 T
¢{0) =1 ¢ (0) =0 c(1)=d§_’_ =_%.

Within an "ideal" magnet, where the bending radius po is constant, s and

¢ are sine and cosine or else sinh and cosh functions. Because of
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thls, the terminoclogy s = a2 sine-like function and ¢ = a cosine-like

function has been adopted for describing the general case where Py = (P

o)
is a function of T .

By analogy with previous discussions, we observe that whenever s(7) =

we are at an image of point A. Also, ¢(T) at the position where s(T) = 0

is the magnification of point A at that image.

e'(t) = - l/f where f 1is the focal length of the system between A
and B. The dispersion dx may be derived from the general differential
equations of motion of a charged particle in a static magnetic field.(l)
The results may always be expressed as a function of Sy and c, as

follows:

t t
a (1) = s (v) 5/ ¢, (T)dar - cx(t)of s, (7)ac
and
t t
dr(t) = s;(t) G’/. c (Tdo - c! (%) J s (Tde
where
dr
dot = — T

is the differential angle of bend of the central trajectory. At an image
point Es(t) = éﬂ note that

t
a(t) = - c(t)of s(T)dee

This approach to the problem may be generzlized to include all of the

second-order aberrations of a system. When this is done, it is always

(1) See SIAC-75 for a derivation of these equations.

2
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Bossible to express these aberrations as functions of the first-order

matrix elements ¢ s d ¢ and s .
x’ x? Tx? Ty y

Having developed the above physical concepts and mathematical tools,
we are now in a position to study more complicated systems. As an example,

we consider the general system shown in Figure 1k,

Ll L L3 Ly
A _M_l' Q ", B

—

Figure 1k

drift elements

=
]

L]

The matrix formalism states that in the x plane, the transformation

magnetic elements

from A to B 1is given by the following matrix equation.

xl X

e |l= R R R R R._ R R.|®
1 L4 2 L3 Ql L > 1 Ll. °
3 1)

As in all matrix calculations, the order of writing down the elements
comprising the system is from right to left. The individual matrix elements
must be derived from the solution of the equation of motion within each element.
If this has been done, then the calculation for the total system is carried

out in the fashion shown by the above equation.

%, Second-Order Matrix Formalism (1)

It is possible to extend the 3 X 3 matrix formalism to solve simul-

taneous sets of power series by generating a second-order matrix equation
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as follows:

b'd 3 X3 second -order xo
1 first-order terms terms
"R n"

91 1 90

é

%2 - %2

1 [}

11 zero nR3n x
x1Q1 8 1 oeo
all other
X8 x & order
1 ? terms
S —] - o S —

The "Ri" term is obtained by squaring the upper left cormer (3 X 3)
matrix so as to obtain second-order equations for xf s lel 3 x16 , ete.,
&s functions of products of the initial first-order variables X 60, and 4§ .
This 1s, then, & convenient mathematical formalism for keeping all the
terms desired and dropping those undesired. In the sbove example, all first-
and second-order terms are retained and all higher-order terms are automatically

dropped by the matrix multiplication.

5. Transformations Involving Many Trajectories

All of the discussion to this point relates to the transformation of
a single trajectory (in addition to the central trajectory) through a static
magnetic system. We wish now to extend the discussion to include "bundles"
of rays. To accomplish this, we take advantage of Liouville's Theorem, which
states that the "phase space"” is conserved through the system. While the

Theorem is strictly true to all orders, a convenient mathematical transformation
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has only been developed to first-order. A manifestation of Liouville's
Theorem is the fact that [R| = 1 .

Now, so long as there is no coupling mechanism between the X plane
and y plane of 2 magnetic-optical system (which is the case if the midplane
symmetry prevails throughout the system) then, the phace space area in a
given plane is also conserved. Consider a bundle of rays represented by
the parallelogram, shown in Figure 15(a), representing the phase space
distribution of the rays at some initial position. If we now look at the
phase space distribution of the same bundle after it has drifted down stream,
we observe the the emax boundary and the x intercept x5 remain unchanged.
In other words, the area of the parallelogram is the same or "phase space gres

has been conserved."

90 )
emax ————— - T m = -~ emax
h
X, *o X
1
- _‘ - -
(a) Figure 15 ()

For mathematical convenience, the parallelogram is rather difficult

to work with and, hence, a phase ellipse is usually used.

]
(o}
2 6 e ] 2 8
max max
3 3
1 %o ) - "
!
f
1
—— e = = = - - = -—— -

(&) Figure 16 (1)
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The phase ellipse transformation for & drift distance is illustrated
in Figure 16. Figure 16(a) corresponds to a beam which is at its minimum
width (a "waist") and Figure 16(b) shows the same beam after it has drifted
downstream from the waist position. The physical meaning of this is that
particles entering at ® = O are parallel to the optic axis and, therefcore,
cannot change their relative positions with respect to the optic axis; that
is, all particles on the Xy axis act in this manner. Those that enter

at a given angle continue at the same angle.

The phase ellipse transformation for a thin lens is illustrated in
Figure 17. In passing throygh a thin lens, © changes and the x dimension
remains constant for a given trajectory.

e

(o]

after lens action

before lens action

Figure 17

Stated in other terms, Xpax remains constant, as does ei (the ©

intercept). It is apparent, in the given example, that the spot size
now becomes, or can become, smaller at the new image because 9max is larger.
This can be related to the physics of the system by saying that the x
magnification is less than unity. This fact is observed directly by comparison
of the x intercept of the ellipse before and after the lens action. It is
interesting to observe that a particle initially at ¢ 1is transformed to
c' and that particles entering at x = O do not change their direction
(9i is constant)., 1If the particles are now allowed to drift, the ellipse
rotates clockwise; when the ellipse if vertical, the spot size is at a

minimum, namely, Xpax = Xy 2 as was illustrated in Figure 16.
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Beam Transport Optics - Part II
(K. L. Brown)

1. Introluction

In Part I, the basic concepts of bean transport op-ics were established.
Starting from the essentials of geometric optics, the methods of matrix
algebra were introduced with the example of calculating the principal planes
of a thick lens. The 3 X 3 matrix for the first- order beau transport

calculations were introduced to take into account the particle momenta.

2. First Order Transformation Matrix

Figure 1 shows a general region containing a magnetic field.

ArbitrarX Ray
(c

Central
Ray

Figure 1: General Magnetic Field Configuration

The matrix presents a convenient way of writing the family of equa -
tions which describe the transformation from surface A to surface B, If
X q} and ® represent the conditions of a ray entering the system at A,
then the conditions of the ray at B are x5 Oland &, Here Xq is the
distance from the central ray to the ray C, 90 is the angle between C and
the parallel to the central ray and ® is the ratio Ap/p where &p is the

difference between the momentum of C and the momentum of the central ray.
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The linear transformation equations are:

o
[
(@]
+
(@]
+
o

xl cx sx dx xo
- 1 1 1

el = c s dx eo

& 0 o) 1 3

The equation & = ® expresses the fact that the magnetic field cannot
change the scalar momentum of the particle. The & terms in the x and 6
equations express the momentum dispersion of the system.

If it happens that A is an object point and B is an image point of
the system, then xlis independent of 90, thus S, = 0. 1In this case, cy

is given by c, = xl/xo = Mx = the magnification in x plane, (ford = 0).

if eo =% =0, then © = - xo/f or ci = - l/f. It must always

1
1 cx x0
be true that the determinant of the matrix |R|, is unity. Thus for this

special case of S, = 0, it follows that si = l/Mx'

3. Beam Switchyarad

As an example of a system which can be calculated with the matrix
method, we next consider the beam switchyard of the two-mile accelerator.
Figure 2 shows the three essential elements, two bending magnets and a
quadrupole lens. In common with many beam transport systems, this one is
designed to be achromatic. Mathematically, this means that the matrix
elements, dx and d; should be zero, so that there is no x or 8 dependence

on the momentum of the particles.

(1)

(2)
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g L
x 2 P,t4ar
A'iA M2
Po Po Po
\ L L 4

Figure 2: The Essentials of the Beam Switchyard

As a preliminary step, we will find the matrix expression for a bending
magnet when measured from the principel planes. The matrix for a bending

magnet, when measured from the ends of the poles, is given by:

c s l-c

Rbend N -s c|s (3)
0 0 1

where ¢ = cos d and s = sin @ and @ is the deflection angle of the central
ray. This expression has been normalized bty setting the bending radius

equal to unity. To restore ordinary units it is only necessary to insert

the bending radius wherever a length is needed dimensionally. In this

case, the matrix then becomes

c ps p(1-c)

Rbend = -s/p | ¢ s ()
0 0] 1

If the distance from the entrance plane to the first principal plane

is Zy and the distance from the second principal plane to the exit plane

is 22, we can find the values 2, and z, by solving the following matrix



equation:
1 -z, O s 1l-c 1 -z, O 1 0 a
0 1 0 c s 0 1 ofl=1|-1/¢ 1 a (5)
0 0 1 0 1 0 0 1 0 0 1

The matrix multiplication need conly be done for the 2 X 2 matrices
as outlined. To illustrate matrix multiplication the indicated operations

will be given below in natural stages as follows:

r— —
1 | "2, c | -cz, + s 1 0
0 I 1| [-s | +sz) + o |-1/f| 1
—— -
—
¢ + 28 -cz, + s 1 0
+szlz2 - cz, -l/f 1
-s tsz, + ¢ (6)
-

Note that these transformations do not change the focal length expression,
-l/f = -s. In order for two matrices to be equal, each individual element

must be equal to its counterpart in the other matrix. Thus we have

c + ZZS =1
¢ + zs=1 (7)
which when solved for zl end z yield
2
2, = (1-c)/s and z, = (1-c)/s .

If we substitute the trigonometric equivalents, and apply standard identities,
we have z, = zl = tan (0/2) which can be seen from Figure 3 to indicate that
the two principal planes are coincident with the symmetry plane in the middle

of the magnet.



Figure 3: The Principal Planes of a Simple Bending Magnet are

Coincident with the Center Plane

The simplified matrix for a bending magnet measured to the principal
planes is then:

1 0 0
Roena = 5 |1]s (8)
0 0 1

To calculete the transformation matrix for the entire Beam Switchyard
system as shown in Fig. 2, we write the matrices in opposite order from that
in which the beam passes through the elements. That this must be true can

be seen from the way in which one element alone is calculated by

1 o]
o, | =R | & (9)
é é

@
fl
2o}
0]
L
o
oo

(10)

and so forth.



If we allow the system tc be symmetrical, i.e.

- 149 -

1 2
the ccmplete series of matrices for Fig. 2 are
1 0140 1]1L1J0O 1 (O] IN¢] 1 0 1 olo0
Rpsy = =s |1 ls||o]1fo| |-1/ffr|ofl|o]1]|0Of]-s
o] o1l 01011 0 0]1 |01 0 1

We will show the step-by-step multiplication of the matrices to get

the dx and 4! terms.
1 L 0 1 0 6] 1-sbL Ls
RBSY =}-s]1-sL |s -1/ frfol)-s s
0] 0] 1 0 0 1;1 0 ol1
— —_
(12
£ L L
L L(2—§ LS(2—§)
—LS(2-§)
L
1 . (1-3) L
Rpsy = [(Ls-1) 2s+f(l-Ls)J s(1-1s) (2-3)
-Ls(2-Z)
f
0 o 1
- _J
To obtein the required condition that 4 = 4! = 0, we set

then

L) _ - L
(--f)-o or f—2

-1 o }o
Rpay = |- T (1-Ls)| -1 | 0
0 o |1

(13)
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Thus the quadrupole actc ac a lens to refocus rays from the center of
the first bending magnet to the center of the last one. For the serious
student, it is a worthwhile exercise to do the BSY problem without the

simplification which resulted from introducing the principal planes.

4, TRANSPORT

As an aid to solving beam transport problems, a computer program
TRANSPORT has been developed at SLAC which takes the greatest amount of
labor out of this wo;k. The program cperates in about the way as the BSY
example above was calculated, but with some important exceptions., Most

importantly:

1. TRANSPORT has the ability to find the best first-order solution
given a certain set of constraints;
2. TRANSPORT also calculates the transformation of a whole family
of rays as found in a beam by means of the concept of 'phase space' which
was introduced in Part I;
3. TRANSPORT can, as an option, calculate the second order effects
on the beam. By second order is meant, for example, terms which depend not
linearly on the displacement X, s but on x2 or x 80 , ete.
To aid in the discussion of TRANSPORT and of the second order terms
we now introduce an abbreviated notation. By writing out the complete equations

for x and y » to second order, we will adequately have displayed the new

notation.
x = (x|xo)xO + (x|eo)so + (x|8)8

2y 2
+ e
(x]xo)xo + (xlxo O)XOeO + (x|xo§)x06

(14)
2 2 2 2
+(x|eo)eo + (x|605)805 + (x]8%)8
2y, 2 2 2
+(x|yo)yo * (xlyomo)yo®o * (x|®o)¢o
v, = ly) + (y]e)e,
Hylxgy dxgyo + (vlx @ )x 0, + (I8 y )6 y_ (15)

+(y|eo®°)eo®o + (y|yoa)y05 + (y|5oo)5oo
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The abscence of certain terms which might otherwise be expected in
Egs. (14) and (15) is due to the fact that horizontal mid-plane symmetry
has been assumed in the derivation. That is, the field on the horizontal
mid-plane is normal to the plane. Thus there can be no (yl|x) or (y|g) term.
Similarly, there can only be even powers of y and ¢ , such as (x]yi) and
(xlyoq%), in the x equation. Also, note that there is no (y|®) or (v15%) term
if there is mid-plane symmetry.
TRANSPORT uses a numerical notation to signify the six basic coordinates:
x gy @ R (16)
1 2 3 4 5 6
The / term hes not been introduced here before. Its significance is the
preservation of the bunch length of a beam such as the SIAC electron beam.
The first order output from TRANSPORT is a 6 X 6 matrix printout of the
R matrix where the labels are implied by row and column position of the elements.
For example the element appearing at the intersection of row 3 and column 4

is the coefficient (y|¢5) ete.

o e < o X
]
]
1
i
1
1]

The second order terms are labelled by the convention indicated in Egs.
(14), (15) and (16). For example, (x‘xg) becomes 1 11 and (x|685) becomes
1 26,

5. Second Order Matrix

Normally the matrix method is expected only to apply to the solution
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of linear, i.e. first order, equations. However, the method
has been extended to include second order terms as discussed
in Part 1I.
For a more extensive discussion of the second-order matrix

formalism, the reader is referred to SLAC report number 75 by

K.L. Brown.



