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FIRST-ORDER R MATRIX FORMALISM FOR TRANSPORT
Section II

Beam transport optics may be reduced to a process of matrix multiplica-
tion(1,2). To first-order, this is represented by the matrix equation (using the

notation of SLAC-75).

6
x,(t) = E Rijxj(o) (1)
J=1
where
=X x,=6 x,=y x,=¢ x5=l and x6=6
The determinant [RI = 1. This is a direct comsequence of the basic equation of

motion for a charged particle in a static magnetic field and is a manifestation of
Liouville's theorem of conservation of phase space volume. (See SLAC-75, page 41
for a proof that |[R| = 1.)

For static magnetic systems possessing midplane symmetry, the six simul-

taneous linear equations represented by Eq. (1) may be expanded in matrix form as

follows:
x(t) Ri; |R2 ) © 0 0 [Rig F;;'
6(t) By |Byp | O 0 O |Ryg{ |6,
y(t) ) 0 0 R33 R3J+ o] o] Y,
o(t) 0 O [Ry3 Ry | O o | |e,
£(t) Rgy [Rsg | © | © 1 fRgg| | £,
_d'(t)_ _o o lofjo o lJ _60_1 (2)




- 154 -

where the transformation is from an initial position T = O to a final position
T = t measured along the assumed central reference trajectory.

Thus at any specified position in a system, an arbitrary charged particle
is represented by a vector (single column matrix), X, whose componehts are the
positicns, angles, and momentum of the particle with respect to a specified reference

trajectory.

[ ]

where:

x = the radial displacement of the arbitrary ray with respect to the
assumed central trajectory.

6 = the angle this ray makes in the radial plane with respect to the
assumed central trajectory.

Y = the transverse displacement of the ray with respect to the assumed
central trajectory.

¥ = the transverse angle of the ray with respect to the assumed central
trajectory.

L = the path length difference between the arbitrary ray and the central
trajectory.

6 = AP/P is the fractional momentum deviation of the ray from the assumed

central trajectory.
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The magnetic lens is represented by the square matrix, R, which describes
the action of the magnet on the particle coordinates. Thus the passage of a charged

particle through the system may be represented by the matrix equation:
X(1) =R x(0) (3)

where X(0) is the initial coordinate vector and X(1) is the final coordinate vector
of the particle under consideration; R is the transformation matrix for all such
particles traversing the system (one particle differing from another only by its
initial coordinate vector X(0)).

The traversing of several magnets and interspersing drift spaces is des-
cribed by the same basic equation but with R now being the product matrix R = R(n)...
R(3)R(2)R(1) of the individual matrices of the system elements. TRANSPORT calculates
and tabulates the product matrix R representing the system.

The zero elements Rl3 = th = R23 = R2h = R3l = R32 = Rhl = ha = R36=Rh6=o
in the R matrix are a direct conseguence of midplane symmetry. If midplane symmetry
is destroyed, these elements will in general become non-zero. The zero elements in
column five occur because the variables x, @, ¥, ¢, and 8 are independent of the
path length difference £ . The zero's in row six result from the fact that we have
restricted the problem to static magnetic fields, i.e., the scalar momentum is a
constant of the motion.

In SLAC report 75 (Ref. 1), a physical significance has been attached to
the non-zero matrix elements in the first four rows in terms of their identification
with characteristic first-order trajectories. We include figures showing these
characteristic functions as a convenient reference.

We now wish to relate the elements appearing in column six and those in
row five in terms of simple integrals of the characteristic first-order matrix elements
cx(t) = R, and sx(t) =R;,. In order to do this, we make use of the Green's func-
tion integral, Eq. (43), Section II of SLAC-75, and of the expression for the

differentisl path length in curvilinear coordinates
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CENTRAL
TRAJECTORY

CX(O) - ] 748A8
. dCy
Cx(O)'E}— =0 O

FIG. 3--COSINE-LIKE FUNCTION cx(t) = Ry, IN MAGNETIC MIDPLANE. c)‘c(t) = R

21°
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ol
CENTRAL

OBJECT 5
Sx ( O) =0 T48A7
’ _ dSy _

FIG. Lb--SINE-LIKE FUNCTION sx(t) = R, IN MAGNETIC MIDPLANE. s;((t) = Ry,
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—_— po+Ap
CENTRAL Do
TRAJECTORY
R+Ap
dX(O) =0 748A9
a;(0)= 4| .o
dt li-0

FIG. 5--DISPERSION FUNCTION dx(t) = Rjg IN MAGNETIG MIDPLANE. d)'((t) = Ryg-
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l Cy(t)

(Jy(()) = |
! _dCy _
Cy(0) = dt f:O-O 74846

FIG. 6--COSINE-LIKE FUNCTION cy(t) = R33 IN THE NON-BEND (y) PLANE. c;r(t) = Rhs.
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Y plane
Sy(t) w
___._...?
OBJECT IMAGE
! dSy _ e S
Sy(O)z_dT— f=0-l 748A5

. '(t) = Ry, -
FIG. T--SINE-LIKE FUNCTION Sy(t) = RB’-I» IN NON-BEND (Y) PLANE Sy( ) uh



- 163 -

1/2
4T = [(dx)e + (dy)? + (1+nx)° (dt)e] / (%)

used in the derivation of the equation of motion.

First-Order Dispersion

The spatial dispersion dx(t) = R16 of a system at position t is derived
using the Green's function integral, and the driving term f(7) = h(T) = EATET for
o

the dispersion (see Table I of SLAC-75). The result is
t t
dx(t) = Ryjg = sx(t) 4/. cx(r) h(t)dar - cx(t) d/r sx(v) h(t)dr (5)
o o

where T is the variable of integration. Note that h(T)dT = da is the differential
angle of bend of the central trajectory at any point in the system. Thus first-order
dispersion is generated only in regions where the central trajectory is deflected
(i.e., in dipole elements.) The angular dispersion is obtained by direct differen-

tiation of dx(t) with respect to t, the curvilinear distance along the central

trajectory.
t t
a(t) = Ryg = 5, (t) ! ¢ (*) n(t)at - e (t) f s, (7) n(T)ax (6)
o
where
_c;(t) =R, and s;(t) = Ry,

First-Order Path Length

The first-order path length difference is obtained by expanding and inte-
grating Eq. (4) and retain%ng only the first-order term, i.e.,

J - [o = (T - t) =f x(T) h(7T)dt + higher order terms
0
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from which
t t t
{ = X, f cx(r) h(t)dT + oo f sx(-r) h(T)dT + lo + 4 / dx('t) h(t)ar
o ° °
= Rsl xo + R529° + to + R566 (7)

Inspection of Egqs. (5), (6), and (7) yields the following useful theorems:
Achromaticity: A system is defined as being achromatic if R16 = R26= o,
\ ]
i.e., if dx(t) = dx(t) = 0. Therefore it follows from Eq's. (5) and (6) that the

necessary and sufficient conditions for achromaticity are that

t t

f s (%) B(7)as = f e (%) B(7)aT = 0 (8)
[e] [e}

By comparing Eq. (7) with Eg. (8), we note that if a system is achromatic, all
particles of the same momentum will have equal (first-order) path lengths through
the system.

Isochronicity: It is scmewhat unfortunate that this word has been used
in the literature to mean equal path lengths since equal path lengths only imply
equal transit times for highly relastivistic particles. Nevertheless, from Eq. 7,
the necessary and sufficient conditions that the first-order path length of all

particles (independent of their initial momenta) will be the same through a system

are that R5l = R52 = RSG =0, i.e., if
t t t
f c () n(7)ar = f s, (7) n(7) ar = f a (7) n(7)ar =0 (9)
<] ° °

First-Order Imaging

First-order point-to-point imaging in the x plane occurs when x(t) is

independent of the initial angle 90. This can only be so when

5 (t) =R, = O. (10)

12
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Similarly first-order point-to-point imaging occurs in the y plane when
t) = = 0, 11
Sy( ) R31+ (11)

First-order parallel-to-point imaging occurs in the x plane when x(t) is independent

of the initial particle position Xye This will occur only if

e (t) =Ry, =o0. (12)

and correspondingly in the y plane, parallel-to-point imaging occurs when

cy(t) =Ry = O. (13)

A parallel ray entering a system exits parallel to the central trajectory if

1
o
|

c;((t) oy = O. (14)

in the x plane; and if

e () = Ryz = 0. (15)

in the y plane.

Point-to-parallel imaging occurs in the x plane if

R,, = 0. (16)

1
s.(t) =Ry

and in the y plane if

Focal Lengths
A simple ray diagram of a "thick" lens demonstrates that 321 and Rh3 have

the following physical interpretations

' _ 1 ' N o
e (t) = Ry = - §; and cy(t) <Ry = - ?; : (18)

where fx and fy are the system focal lengths in the x and y planes respectively.
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Zero Dispersion

For point-to-point imaging, using Eq's. (5) and (10), the necessary and
sufficient condition for zero dispersion at an image is

t

a(t) =Ryg = j s (%) B(7)at = 0 (19)

For parallel-to-point imaging, (i.e., cx(t) = 0),the condition for zero dispersion

at the image is
t

dx(t) =Ryg = 6/~ cx(t) h(t)dt = 0. (20)

Magnification

For monoenergetic point-to-point imaging in the x-plane, the magnification

is given by
M =w = R :c(t)
x x 11 X
(o)
and in the y plane by
=R = t 21
My = Ry3 = cy(t) (21)

where a negative number means an inverted image.

First-Order Momentum Resolution

For point-to-point imaging the first-order momentum resolving power Rl

(not to be confused with the matrix R) is the ratio of the momentum dispersion to

the total image size. Thus if 2xo is the total source size then

S T N - B 0
1 AP | 2x T {2xc (t
o 11 0 X
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For point-to-point imaging sx(t) = 0. Using Eq. (5), the dispersion at an image

is
t

a8 == o) [ s (0 n(mas (22)

o)

from which the first-order momentum resolving power Rl becomes

a () i

2x R, = O] = f s (7) h(t)aw =|R52| (23)
o]

Equation (23) for the first-order resolving power of & system may be
expressed in a number of useful forms. If we consider a ray (particle) originating
at the source with xo = 0 and 6==%§—= 0 and lying in the midplane. (i.e., a mono-
energetic point source), the first-order equation representing the midplane dis-

placement, x, of this trajectory is

x(t) = s (t) g (24)

We may then rewrite Equation (23) as follows:

t t
1 (£-1)
2x R, = / s, (%) n(7)dr = o f x(7) n(T)at = g |R52l (25)

(o] ]

or we may. also write it in the form

t
_ 1 x(t)ar  _ 1 1
Rl‘zxg f BSo '(2x9) (BD)/Bd-A (26)
Qo (o] (el e] o S

where deA is the magnetic flux inclosed between the central trajectory and the

ray represented by Eq. (24), and Bp is the magnetic rigidity (momentum) of the
central trajectory. Please note, however, that if the ray crosses the central

trajectory or the sign of B changes, this changes the sign of the integration.
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Some important observations may be made from Eq's. (25) and (26).

1) Resolving particles of different momentum requires that a path
length difference must exist between the central trajectory and the trajectory
defined by Eq. (22). The greater the path length difference, the greater the
resolving power.

2) From Eq. (24), we may define resolving power as the magnetic flux

inclosed per unit phase space area per unit momentum (BP) of the central ray.



