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First-Order o Matrix (Phase Ellipse) Formalism for TRANSPORT

In accelerators and beam transport systems, the behavior of an individual
particle is often of less concern than is the behavior of a bundle of particles
(the BEAM) of which an individual particle is a member. An extension of the matrix
algebra of Eq. (3) provides a convenient means for defining and manipulating this
BEAM. TRANSPORT assumes that the bundle of rays constituting a BEAM may correctly
be represented in coordinate phase-space by an ellipsoid whose coordinates are the
position, angle, and momentum coordinates of the arbitrary rays in the beam about
an assumed central trajectory. TRANSPORT is a matrix calcuiation thet truncates
the problem to either first- or second-order in a Taylors expansion about the
central trajectory. Particles in a BEAM are assumed to lie within the boundaries
of the ellipsoid with each point within the ellipsoid representing a possible ray.
The sum total of all phase points, the rhase space volume, is commonly referred
to as the "phase space" occupied by the BEAM. The validity and interpretation of
this phase ellipse formalism must be ascertained for each system being designed.
However, in general, for charged particle beams in, or emanating, from accelerators,
the first-order phase ellipse formalism of TRANSPORT is a reasonable representation
of physical reality; but for other applications, such as charged particle spectro-
meters, caution is in order in its use and interpretation.

Thé equation of an n-dimensional ellipsoid may be written in matrix

form as follows:

x(0)T o(0)r x(0) =1 (21)

where X(O)T is the transpose of the coordinate vector X(0), and ¢(0) is a real,

positive definite, symmetric matrix.
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The volume of the n-dimensional ellipsoid defined by sigma is

n

1/2 1/2_

"Té_-:—l) (det o)

This is the "phase space" occupied by the beam.

, the area of the projection in one plane is A = n(det o)

As a particle passes through a system of magnets, it undergoes the matrix

transformation of Eq. (3). Combining this transformation with the equation of the

initial ellipsoid, and using the identity RR-l = I (the unity matrix), it follows
that:
. -1
x(o)T (RTRT ) a(o)'l (R'lR) X(0) =1
from which:

(rx(o))T (ro(0) R)™Y (rx(0)) =1 (28)

The equation of the ellipsoid representing the "BEAM" at the end of

the system is thus:

VT o)t x1) =1 (29)

where the equation for the sigma matrix at the end may be related to that at the

beginning by:

o(1) = R g(0) RY (30)

In addition to calculating the product matrix R, TRANSPORT also computes
the sigma "BEAM" matrix at the end of each physical element via Eq. (30).
All of the important physical parameters of the BEAM ellipsoid may be

expressed as functions of the matrix elements of the sigma matrix at the location
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"in question. 1In particular the square roots of the diagonal elements @J;;ITE) are
the projection of the ellipse upon the coordinate axes and thus represent the
maximum extent of the BEAM in the various coordinate directions. The correlation
between components (the orientation of the ellipse) is determined by the off-diagonal
terms (the aij's)' An illustration of this is given below for a 2-dimensional

ellipse.

Description of the Sigma BEAM Matrix

Consider a 2-dimensional (x,6) plane projection of the general 6-dimensional

ellipsoid. Let

’— -
a. (o}

11 21

%21 920

L .

be a real, positive definite, symmetric matrix; the inverse of which is

%o =%
oL 1
e2
~% °11J

where 62 is the determinant of o .

The 2-dimensional ccordinate vector (column matrix) and its transpose

X=<x>am g
\®

The expansion of the matrix equation X! o % X

are:

(x &)

1 1s the equation of the ellipse

2 = €2 -
9, X -2021 X6 + 01162- € = det © (31)

The (x,6 ) plane BEAM ellipse represented by Eq. (31) is shown in the following

figure along with the physical meaning of the sigma matrix elements.
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6
‘ 1 22
slope = — —_—
omax= Y
. 2 T %22
Omt =% (1-T12/ o
11
>
%1 “max
2 ) _
oy (1-125) = xine
CENTROID 1358A!
The area of the ellipse is given by:
. /2 - o
A =n(det o) = ™Xpax eint = ™Xynt max (39

A Two Dimensional BEAM Phase Ellipse

The correlation between x and © (the orientation of the ellipse) depends

upon the off-diagonal term 9o - This correlation is defined as

So defined r always falls in the range

-lgrg1l

]

N

The correlation, r, measures the tilt of the ellipse and the intersection of the

ellipse with the coordinate axes.
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Since the det R =1 for all static magnetic beam transport elements, it
follows that the determinant of o(l) and o(0) are identical under the transforma-
tion of Eq. (30). Hence the "phase space" area is an invariant under the transfor-
mation of Eq. ( 30). This is a statement of Liouville's Theorem for the magnetostatic
fields employed and results from the fact that the det R = 1.

It is perhaps worthwhile noting that this 2-dimensional representation
of the BEAM matrix has & one to one correspondence with the Courant-Snyder treatment

of the theory of the Alternating Gradient Synchrotron¥* as follows:

11 21 B -a
921 %2 -a Y

The Phase Ellipse Beam Matrix used by TRANSPORT

For static magnetic systems possessing midplane symmetry, the (x,8)
plane and (y,p) plane trajectories are decoupled in first-order, i.e. there is
no mixing of phase space between the two planes. However for mathematical simplicity
and to allow for the possibility of more general systems, the sigma BEAM matrix used

in a TRANSPORT calculation has the following general 6-dimensional construction.

x 6 y % / é
x | o(11)

6 o(21) of 22)

y | of31) of 32) o(33)

@ | ofk1) o( 42) o( 43) o( bk)

! | o(51) of 52) o(53) a( 54) o(55)

6 | of6) o 62) o 63) o 64) o 65) o( 66)

* E. D. Courant and H. S. Snyder, "Theory of the Alternating Gradient
Synchrotron”, Annals of Physics 3, pp 1-48 (1958).
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The matrix is symmetric so that only a triangle of elements is needed.
In the printed output this matrix has a somewhat different format for

ease of interpretation:

x 6 y @ 1

x | A1) o

o | Jo(22) r(21)

y o(33) M r(31) r(32)

¢ o &%) MR r(b1) r(42) r(43)

Z 9(55 CM r(51) r(52) r(53) r(54)

¢ a( 66) PC r(61) r(62) r(63) r(64) r(65)
where:  r(1ij) = -%id) (34)

[oc10) U(jJ)Jl/e

As a result of the fact that the matrix is positive definite, the r(ij)'s

satisfy the relation

Ix(13)] g 1 (35)
The physical meaning of the Qc(ii)'s is as follows:

= x = The maximum (half)-width of the beam envelope in the
X plane at the point of the printout.
The maximum (half)-angular divergence of the beam envelope

in the x plane.

1879
E@
]

o(33) = Ypax = The maximum (half)-height of the beam envelope.
o(kk) = Ypax = The maximum (half)-angular divergence of the beam envelope
in the y plane.
1J((55) = lmax = 1/2 the longitudinal extent of the bunch of particles.
o(66) = & - The nalf-width 1/2 (AP/P) of the momentum interval being

transmitted by the system.



- 175 -

The units appearingvnext to the\#J(ii)'s in the TRANSPORT printout sheet
are the units chosen for coordinates x, 8, y, ¢, £fand § = AP/P respectively.

To the immediate left of the listing of the beam envelope size in a
TRANSPORT printout, there appears a column of numbers whose values will normally
be zero. These numbers are the coordinates of the centroid of the beam phase ellipse
(with respect to the initially assumed central trajectory of the system). They may
become non-zero under one of three circumstances:

1) Wwhen the misalignment (Type Code 8.) is used.

2) When a Beam Centroid shift (Type Code 7.) is used.

or 3) When a 2nd-order calculation (Type Code 17.) is used.

Physical Interpretation of Various Projections of the 2-dimensional BEAM Ellipse

Consider again Eq. (30) o(1l) =R of0) RY and expand it in it's most

general fo;m for the 2-dimensional (x,6) plane case.

Rip R\ f9,(0) 95, (0) 11 Boy oy, (1) 9 (1)
g (1) = =
Roy  Rppf \0(0)  05(0)/ \R;, Ry 9 (1) oy(1)

the result is:

u o,1(0)+2R) ;R; 50, (O) +R12 %,0(0) LRuRe‘_":l(o)*( Ri2Rop*Ry oRp; ) 0py (0)+R) JR55055(0)
o (1) = >
/ Ry 9 (0)+8Ro Ry 0y (0) 4R35 95(0) (36)

In the special case when the initial ellipse is erect i.e., cél(O)=0,
o(1) reduces to:

o2
R7y19,(0) + Rle 9,0(0) L 11821 91(0) + Ry Rp59,5(0)

o(1) = >
/I B3 91(0) + Rop%(0)

Similar results are, of course, obtained for the (y,¢) plane.

(37)
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If an arbitrary beam transport systgm is reduced to the most elementary
first-order form of representing it as an initial drift distance, followed by a
lens action between two principal planes, and a final drift distance; then we ob-
serve that for the 2-dimensional representation there are only two basic phase
ellipse transformations of interest.

(1) An arbitrary DRIFT distance and

(2) A LENS action

Each of these elementary cases are illustrated on Fig.8 for both a
parallelogram &s well as ellipse phase space transformations. Note that a DRIFT
followed by a LENS action is not necessarily equal to a LENS action followed by
& DRIFT; i.e., the matrices do not necessarily commute.

The phase ellipse transformations for a DRIFT and for a LENS action
(between principal planes) as shown in Fig. (8 ) may be readily calculated using
the results of Eq. (37).

The 2-dimensional R matrix representing a drift of distance L is:

1 L
R(Drift) = ( > (38)
0o 1

Substituting into Eq. (37) we find

2
a,,(0) + L%, (0) L022(0) 0,(1) | o,(1)
o1) = 5 = (39)
LGEZ( ) 022(0) Oél(l) Oée(l)
Attaching the physical meaning to the matrix elements yields the following
interpretations:
2
%1(1) = @;(0) +L7g,(0)
or

() g = (D) + L2 (D) (40)
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similarly
0p(1) = 0y(0)
or 2
(ef)max = (GO)max (k1)

Note that this transformation assumes that the initial phase ellipse is erect,
i.e., 621(0) = 0.

The 2-dimensional R matrix for a lens actions (between principal planes)

is 1 0
R(Lens) =| 1 (42
f
Substitution into Eg. { 37) yields
oo | Ll 0,,(2) | oy(2)
11 T -
e (0) (k)
0,.(0 (o} 0 o
_ 1; ll2 + 22(0) 021(2) 022(2)
' J U |
Agaln mttaching physical meaning to the matrix elements we have:
0.(2) = 0,(0)
or
2
(xé)max = (xg)max (44)
and (0)
o,,(0
11
9,2(2) = 2 92(0)
or
2 _ 1 2 2
(62)max N ;5 (xo)max + (oo)max (55)

Note the change in sign of the 021 elements for the Drift and the Lens actions
indicating the different sense of orientation of the resulting ellipses as

1llustrated in Fig. 8.
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The Upright Ellipse:

A case of particular interest in any 2-dimensional phase ellipse projection
(e.g., the (x,8) plane or the (y,®) plane) is when the off-diagonal correlation
matrix elements are equal to zero; i.e., an erect ellipse. In a field-free region
this correspords to & so-called '"waist" in the BEAM &s illustrated in Figz. 9.

It is important to understand correctly the meaning of a waist: For an
existing beam, it is the location of the minimum beam size in a given region of
the system. Although the waist is the minimum beam size in any given beam, the

minimum beam size achievable at a fixed target position by varying the focal

strength of the preceding lens system is not the same as the above defined waist.

See Fig. 10. In a field-free region, the minimum beam spot size achievable at a
fixed target position will occur when the preceding lens system is adjusted such
that a waist precedes the target position. Only in the limit of zero phase space
area do these quantities occur at the same location. A useful criterion that
determines the physical proximity of these quantities is the following: If the
system has been adjusted for the smallest spot size at a fixed position and if the
size of the beam at the principal planes of the optical system is large compared to
its size at the waist, or at the minimum spot size, then the location of these
quantities, the waist and the minimum, will closely coincide; if, on the other
hand, the size of the beam does not change substantially throughout the system,
then the locations of a waist and the minimum beam size may (and usually will)
differ substantially. The numerical proximity of these two quantities will be
discussed in greater detail later in the report.

In a field free region (i.e., a Drift), the distance to a waist from any
location may be readily calculated if the ¢ matrix at the location is known. Using

EQ. (36) and the R matrix for a Drift (Eq. 38) we have for the (x,0) plane:

021(1) = 021(0) + L "22(0) = 0 (specifying that o{1l) shall be at a waist)
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or the distance to the waist is:

__ a0 ‘}“11
L--W = -er r (14-6)

22
Similarly for the (y,®) plane the distance to a waist is:
) Uu3( 0)

g
- = - J.jé
L W r43 01{_}4’ ( h’7)

Relationship between a Waist and a Parallel-to~Point Image

A parallel-to-point image in the (x,8) plane occurs when Ryp = 0. The

R matrix corresponding to this is

| - _ . . .
Since |R| =1, R R, =-1 for this situation.
If we assume an erect ellipse o(0) as the beginning of the system, the
final beam matrix o(1l) is given by substitution of Eq. (48) into Eq. (37) as

follows:

12722%0
e = R 0,.,(0) I R2 o, .{(0) + R2 g, -(0) ()
12800%0 21%11 22%2

R§2022(O) | R. R (0)

for parallel-to-point imaging.
Several conclusions may be extracted from this result: The first observa-
tion is that a waist and a parallel-to-point image will coincide if R11=R22=

is equivalent to requiring that the object and image distances (measured to the

0. This

principal planes) are both equal to the focal length f of the system.
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The distance to a waist in this example is:

1
/
L = 0 (1) BpgRip05500) o 5,5,90(0) (50)
ST e .1y T B8 2 - T2 .2
22 R21011(0)+R22022<0) (cx) all(o)+(sx) 022(0)
' s . 3 .
If sxsx = R12R22 = 0, a waist and a parallel-to-point image coincide.

1

1]
If sxsx = R12R22 > O, the waist precedes the image; and if sxs = R12R22 <0,

the waist follows the image; unless 022(0) 0 (zero phase space area) in which
case & waist and an image always coincide.
The size of the beam at the image is:

(xf)max =0,(1) = sz”ez(o) = fz(eg)max (51)

independent of the source size X, and of the object distance.

The size of the beam at the waist is:

a,,(0)a,,(0)
(size at waist)2 = ]g(ogi) = él 22 5 (52)
22 R21°11(°) + R22a22(0)
1
If 322 =s, = 0, the two sizes are equal as expected, otherwise the

size at the waist is always smaller.

Relationship between a Waist and a Point-to-Point Image

A point-to-point first-order image in the (x,6) plane occurs when

Rl2 =8, = O. The R matrix representing this case is:

= (53)

=+

where |R| =1 = R, Ry, and M is the magnification.



4

If we again assume an erect ellipse o(0) as the beginning, the final

beam matrix o(l) is given by Eq. (37) as:

2

Ri1

(0) Ry1Rpy 914 (0)

o (1) = . (54)

5
R)1Rp1 97, (0) l Rp1911(0) + Rpyp0pn(0)

for point-~to-point imaging.

Our first observation is that except for a zero source size, an image
and & waist will coincide only if Rl2 = R21 = 0, Clearly this is not possible
with a single lens; at least two lenses are needed. Such an optical situation is

as follows:

J L
\ \ 4 cx* Roy* fy =0

1510A 26

The distance to a waist is

o..(1) R,.R..o, .(0)
_ 21 - 1182191
L o= - ?2'27_17 =T 2 (55)

5
Rp1917(0) + Ryp0,,(0)

1

So if RllREI =c.C T 0, a waist and a point-to-point image coincide.

1 T
If cxcx > 0, the waist precedes the image and if ¢ Cx < 0, the waist follows the

image.
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The size of the beam at the image is

(xf)max = Ull(l) = Rficll(o) - (Mxo)a (56)

and the size of the beam at the waist is:

: 0.,(0)a,,(0)
(size at waist)2 = £g<?i% = él 22 5 (57)
22 RElUll(O) + R22022(O)
Thus if REl = 0, the two sizes are equal since IR[ = R11R22 =1.

Otherwise the size at the waist is smaller than the image size.

Relationship between a Waist and the Smallest Spot Size Achievable at a
Fixed Target Position

Consider the following general situation:

Principal Planes of Lens System Being Adjusted

—~—— Vo (min)(@Target

R(fixed) —————

./o-“(lens) ‘}
+/ 0, (Waist) *

f(variable) TARGET

Z >

1510427

Assume that the size of the beam 1Joll(lens) at the principal planes of the lens

system being adjusted is held constant (i.e., that no other preceding optical
elements of the system are being varied); and that the remainder of the system
may be represented by a general matrix R which is also held constant. The focal

length f 1is then varied until a minimum spot size1Jcll(min) is achieved at the

target location. The sigma beam matrix at the target position then has the
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following unique form independent of the orientation of the initial beam ellipse

at the lens.

2
Ryplal R Rpplol
o}

cll(lens)

Gll(mln) c2l(min)

o{at target) for a =

minimum spot size o,.(lens) RZ,.]o] o,,{min)
22
at target

12 Ull(lens) —_
L — (58)

thus

2
Riplel

cyll(mln) = cll(lensi

or

2
ryplol
xmin = x\lensi (59)

If the position of the waist and the minimum beam size both fall within

the same field-free region, then the distance to the waist from the target is:

.- oel(min) . R SRy = on all(walst) (60)
o,..(min) 2 o,.(lens) 12722 o, (lens)
22 R22 + 11 11
ollimini
r
So if S S, = ngR22 = 0, the waist and the minimum spot size coincide. If

R12R22 > 0, the waist precedes the target; and if R12R22 < 0, the waist occurs

after the target position.

If the waist and the target positions fall within the same field-free

region, the following simple relationship exists between the beam size at’ the

lens dcll(lens), at the waist \Icrll(walst), and at the target "oll(mln).
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2
R
1 1 22
— = — + - - (61)
dll(walqt) o), min) cll‘lenij

If now the lens system is readjusted to form a waist at the target position as
shown by the dotted lines in Fig. 10, the relative size of this waist and the

minimum spot size achieved by the previous lens setting is:

2
. ( s
cll(mln at target) Ryp0,,(waist at target)

(waist at target) =1- cll(lens) (62)

91

Again we observe that the two quantities approach each other if the size of the

beam at the lens is large compared to the beam size at the target.
There are several cases of special interest taat may be derived froum

the above equations:

1) If R22 = 0 at the target position, then a minimum spot size at the
target is also a waist. This corresponds to point-to-parallel imaging from the
principal planes of the variable lens system to the target position. Beyond the

last lens in the field-free region preceding the ﬁarget, R = a constant if

12
R22 = 0; thus we conclude from Eq. (59) that in this field-free region, the
minimum spot size achievable at a target is a waist and is independent of the
target position. Such a system is a "Zoom" lens.

2) If there are no lenses beyond the variable lens system, i.e., R

is an entirely field-free region (a drift), tuen R is of the fomm:

1t Ry Foo
R = =
o 1 R2l R22
In this situation R12R22 =L is a positive quantity, consequently the waist alwavs

precedes a minimum spot size at a target. A case of particular interest is when
the minimum spot size achievable is equal to the initisl bean size at the lens. It

then follows from Eq. (60) that Z = -L/2, i.e., & waist occurs midway between the
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lens and the target. From Eq. (61), the ratio of the size of the beam at the lens

and at the waist is:

g,.(lens)
x(lens _ 11 _
x(waist)] o, (waist) 02 (63)
11
Combining this result with Eq. (59),
. 2
L =R = x(lens)x(min) _ x“(lens)
12 ol 1/2 " x{waist)6(waist)
or
_ 2 x(waist)
L= 8(waist) (64)

where L is the longest distance a beam can drift without exceeding its initial

size at the lens.

Inaging from an Erect Ellipse to an Erect Fllipse

The genersl sigma matrix for imaging from an erect ellipse to an erect
ellipse may be derived by inspection from Eq. (36) by setting o (1) = cal(o) = C.

The result is:

" Rflollm) + Rfeazz(o) 0 5,,(1) | 0
oLy = p p =
0 | Rp1911(0) + Ryp0,5(0) 0 I 922(1) | (65)

Using this property and the fact that

For symmetric magnetic systems Rll = R22.
2
IR] =1, it follows that R1232l = (Rll - 1). So for symmetric magnetic systems

Eq. (65) reduces_to:

] IU’ 1/2
[' o } l 0 o1 (3) °

"aa‘”_} (66)

a1

U(l) = =
e
o -
Ri2
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The above equations may be used to calculate the optimum design parameters for

periodic beam transport systems.

Example No. 1:
Consider a unit-cell of a periodic focusing array consisting of focusing

elements only as indicated below.

Beam Envelope ./o-”(w)
\/cr”(O)qr N o (1)

f f 1510A28

The R matrix for the unit-cell, i.e., from the principal planes of the first lens

to the principal planes of the second lens, is

Ry; 2f

R = (61)

1
o2 F1

+

t
i+

If now we require that the beam envelope poscess s:immetr, colucident with the lens

s netry i.e., t at erect ellipses occur at tne principal pisnes of eaci: lens and

& waist midway in vetween, and furthermore trat t:e ream size at the sezond lens

be kept to a minimum and equal to the beam size at the first lens: then substituting

Eq.(67) into Eq. (66) and setting all(l) to te & minimum yields:

\}"11( 1) = oy, (0)

1[0 o)1 (¥)
R R (68)
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where 011(0) and 622(0) are measured at the principal planes of the first lens.

and finally

x(max) all(o)
—— = 2 69
x(min) 01, (W) g (69)

Note that the ratio of the maximum to the minimum beam size (Eq. 69) is inde-

pendent of the phase space area and of the lens spacing.

Example No. 2:

If the unit cell is a FODO array as follows:

Beam Envelope

/o) (w)
_—

/i | (\
A

f -

:.\/ cr“(lv)

1510A29

The R matrix for the unit cell{from the Principal planes of the first lens to the

principal planes of the third lens) is:

2
Ry, £(2 + ;)
R = (70)
/) !
'L?Q'F) Fa

If we now impose the symmetry requirements that erect ellipses occur at
the principal planes of each lens; and that the beam size \’oll(l) at lens 3 be

8 minimum and equal to the beam size "Gll(o) at lens 1, then it follows that:
Vo (1) = ey, ()

4 ~ 1.236 (71)
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1119 = -L*ﬁ 2 k.23
7,09 1 -5
or
(0)
x/max) _ 911 ~
x(min) V ollfw} = 2.055 (72)

and finally

0.3003 E;;T57 (73)

where oll(O) and 022(0) are measured at the principal planes of the first
lens in the FODO array.

For a FODO quadrupole array where the field strength is held constant
for all elements rather than the focal lengths, the results are somewhat
different than those above. This case may be readily calculated via TRANSPORT

using the above results as initial guesses in the calculation.

Relationship between a First-Order Point-to-Point Image and the Minimum Sypot
Size Achievable at a Fixed Target Position

This broblem is not as easy to explore as were the preceding ones because
the question arises "the first-order image of what?" If, however, we restrict

the discussion to a thick or thin lens system that dces not have intermediate

images between the source and the image under consideration, then the following
comments are applicable.
The ratioc of the minimum beam size to the size of a first-order image

at & fixed target position may be calculated using Eq.'s {56) and (59). From

Eq. (59) we have: P
oy y(min) = Lol
11 a 1 lens

1

and fron Eq. (56) tie size of a first-order image at btue varget position 1is:

‘}oll(image) = |M] Joll(object)=(%) Gll(object)
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where M is the magnif ication of the first-order image, p is the object distance
measured to the principal planes, and L is the distance to the target measured from
the principal planes.

The ratio of sizes is

i 2
0,,(min) ‘ _ 24 ' (74)
all(lst order image) Ull(obJect)Ull(lens)
Using Eq. (36), we may write
cll(lens) = cll(object) + 2p UEl(Object) + p2 ceg(object) (75)

and since

ol = all(ob.ject) g, (object) - ozlz(ob,ject)

it follows that the first-order image will coincide with the smallest spot size only
if the orientation of the initial beam ellipse at the object is such that

P ael(object) = - oil(object) (76)

or if cll(object) =0 i.e., for a point source.
For an erect ellipse at the source and the lens adjusted to provide a
minimum spot size at the target, it can be shown that the first-order image will

always follow the target position (the minimum spot size) by a distance

Ull(object) xi
Z = L|M| W = LM m) (77)

where L 1s the distance to the target position from the principal planes of the lens
system, X, is the source size, and M is the magnification of the first-order image.
Again we observe that the ratio of the beam size at the source and the beam size at

the "lens" is the criterion determining the proximity of these two quantities.

Orientation of the Major Axes of & Phase Space Ellipse

The matrix equation for a coordinate rotation as shown in Fig. 11 1is
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Fig. 11

1510A3Y
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x cos a -sin @ / x
1 o]
( ) = | (78)
91 sina cos a 6
or
)(1 =MZX
o}

The equation of an ellipse in either set of coordinates is

X

Lotlx=1 where X=(9);XT=(X9)

and the transformation from o{0) to o(l) is

o(1) =M o(0) M (79)

provided IM' = 1,which it does.

If we assume a general ellipse for 0(0) and an "erect" ellipse for o(1),
i.e.,

9,(0) ] 95(0)

o,(1)

a(0)- = and o0 (1) =

022(0) 0

95, (0)

PO E——
I\)Q
Ny
—
—
~—

It follows from Eq. (72) that:
P M
0y (1) = 0 =M My 0, (0) + (M) Mpy + My My 5) 0 5(0) + My M 50,,(0)

from which
29,,(0)

022(0) - ot 0)

Tan 2@ = (80)

or using the definition

%

Tyy = —
\Jn 22
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an alternate form of expressing the ellipse orientation is

rpy Vo1 %2 eryy

Tan 2o = —?2_2-70—— = = = (81)
1 22 ju
11 %2

Clearly a is dependent upon the units chosen for 94 and 02’
z

except in the obvious case of @ = 0; i.e., an erect ellipse.






