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SECOND -ORDER ABERRATIONS
Section III

TRANSPORT has the capability of calculating the second-order matrix
elements (aberration coefficients) of any static-magnetic beam transport system
composed of combinations of bending magnets, quadrupoles, solenoids, sextupoles
and interspersed drift spaces. It is assumed that mid-plane symmetry prevails for
any given magnetic element in a system (except for solenoids) but not necessarily
for the system as a whole. The notation used in a TRANSPORT printout is desecribed
in reference 1 (SLAC-75) beginning on page 46. The subscript notation is the same
as that used for first-crder where the subscript 1 means X, 2 means 9, 3 means y,
4 means ¢, 5 means f, and 6 means 5.

The symbol Rij has been used to signify a first-order matrix element and
the symbol TiJk will be used to signify a second-order matrix element. Thus we
may write the second-order Taylor expansion representing the deviation of an arbi-

trary trajectory from the central trajectory as:

6 6 6

xi(t) = Z Riij(O) + Z ETijka(o) xk(O)

J=1 J=1 k=1

where x1=x x2=0 x3=y xu=47 x5=£ and x6=5 denotes the subscript
notation. In an actual computer printout, the TiJk'S are abbreviated as (i jk);
for example Ti06 = (xlOOB) would appear in a printout’as (1 26) followed by the
computed value of the aberration coefficient for the system being designed.

In order to modify the magnitude of any given aberration coefficient, it
is necessary to introduce multipole component(s) of the magnetic field of order
equal to or less than the order of the aberration. Thus sextupole, gquadrupole and
dipole components of the field may all be used to modify any given second-order
aberration. But, in practice, the second-order Qberrations are usually minimized

by only introducing sextupole components so as not to disturb the first-order

optics of the system. It should always be kept in mind, however, that it may be
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beneficial to go back and change the first-order solution {optical mode) so as to
provide a more favorable situation for correcting aberrations; a wise selection
of the first-order optical mode may in many instances be the deciding factor bet-
ween the success or failure of a design.
For a fixed location of a sextupole component, the partial derivative

of any second-order aberration coefficient Ti'

3k with respect to the strength S

2

of a given sextupole component is a constant. i.e.,

to T, .

Er—;jE = a constant = the coupling coefficient of S
52 2 ijk

Thus minimizing a selected group of aberrations is a straight forward problem
of solving a set of simultaneous linear equations once the coupling coefficients

are known.

The strengths of the sextupole components may be determined
directly by TRANSPORT. The user may either constrain certain
second order matrix elements to certain values, or may minimize
the net second~order contributions to a given component of the

beam ellipsocid

Second-Order Phase Ellipsoid Formalism

It will be noted by the user, that a second~order TRANSPORT calculation
modifies the phase-ellipsoid printout. In a second-order run, TRANSPORT calculates

and prints out the second-moments of the phase space distribution function in the

\IE;; columns. In addition, it also calculates and prints out the new coordinates
of the centroid (first-moment) of the phase space distribution function and tab-
ulates this result to the left of the \[5;; columns in the same manner as it does
for a magnet misalignment run.

Caution should be used in the use and interpretation of the second-order

phase ellipsoid results especielly 1f it is known or suspected that the phase space



- 199 -

distribution resulting from a second-order run is not symmetrical
about the beam centroid. To be certain of the situation in any
given design, it would be wise to calculate the actual distribution
function by using the Monte-Carlo computer program TURTLEl.

The actual method used in TRANSPORT by which the second-
order terms are included in the beam ellipse is described in the
following report. The reader should bear in mind that the
derivation is based on a gaussian initial beam distributipn.
For any other initial distribution the second order effects on

the beam ellipsoid should be regarded only as an approximation.

1 D. C. Carey, "TURTLE, A Computer Program for Simulating Charged
Particle Beam Transport Systems", N.A.L. Report No. 64,
Fermi National Accelerator Laboratory, Batavia, Illinois (1971).
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Second Order Contributions to Beam Dimensions

David C. Carey

May, 1972

I. Introduction

The phase space region occupied by an aggregate of charged
particles in a beam line is often represented by a higher
dimensional ellipsoid. Given no further information, one
might interpret such an ellipsoid as an envelope inside of which
particles are distributed uniformly, or as giving the scale
dimensions of a gaussian distribution. The latter case has
the advantage that is easily adapted to include higher order
effects of the beam line. In either case the parameters of
the ellipsoid are simply related to the first and second moments
and therefore the width of the distribution in any coordinate.
In first order an ellipsoid at any point in a beam line is
transformed into another ellipsoid at any other location in a
beam line. 1In second and higher orders a transformation from
one location in a beam line to another will cause the ellipsoid
to become distorted. One can still, however, calculate the
first and second moments of the distribution, and thereby
obtain a measure of its dimensions in any coordinate.

Below we elaborate on the methods for calculating the
ellipsoid parameters at any poipt in the beam line. Much
of the first order thcory can be found in the work of Brown

and uowry.l It is included here for completeness.

Orperated by Universities Rescarch Association Inc. Under Contfact wilh the United States Atomic Energy Commissi.
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II. The Ellihrigd Formalirm

The position and motion of a particle in a beam line may

be represented via a six~dimensional vector.

/
(

X =
|

{ |
/
\¢/

The coordinates x and y represent respectively the

(1)

o e DO X

horizontal and vertical displacements at the position of the
particle, 6 and ¢, the angles with the axis of the beam line

in the same planes. The quantity & represents the longitudinal
position of the particle relative to a particle traveling on
the magnetic axis of the system with the central momentum
designed for the system. The remaining gquantity § = é&
gives the fractional deviation of the momentum of the particle
from the central design mcomentum of the system.

An ellipsoidal hypersurface in this six-dimensional space

may be represented by the equation:

Xo x=1 (2)
where 0_1 is a symmetric positive definite matrix. We represent
this matrix as an inverse for reasons which will become apparent
later. At this stage the center of the ellipsoid is assumed
to lie at the origin of the coordinate system. The ellipsoid
may be taken to be the envelope of a uniform distribution, or
the scale in a gaussian distribution, giving a particle density:

p = C exp(—%xTc-lx) (3)
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For any rcal symmetric matrix there exists a coordinate
system in which that matrix is diagonal and an orthogonal
transformation to that coordinate system.2 Let us represent
the orthogonal transformation by the matrix 0, so that:

n

ij Xy (4)

xi =7z 0
J

where Qj are the coordinates in the frame where the transform of

o-l and therefore that of ¢ are diagonal. Calling the matrix o

N
transformed to the new frame & we now have:

n
%13 7 7, %ix k2 ©3s ()
and equation (1) becomes
XTel %= (la)

Specializing to the gaussian distribution, it is now an easy
matter to calculate the second moments in the new frame since

the coordinates are decoupled. We arrive at:

A" N N
i%5 T 943 T 845 95 )

The second moments in the old frame are now:

o N~

Xi%5 = }Eloik Osq ¥iXg = ﬁgoik 050 XXy
=1 0, 0., 8 =agq... (7)

k2 ik 738 %% g ij

Therefore in this case the elements of the matrix ¢ give the
second moments of the distribution in the original coordinate

system. The density function, properly normalized, now becomes:

N, exp(—%xTO‘lX) (8)

Vdet (o) (2r)3

©
n

where NO is the total number of particles. Since the matrix

. . "
O is orthogonal the determinants of o and ¢ are equal.
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The elcments of the matrix o may'be put in more convenient
form for interpretation. The square roots of the diagonal
elements may be taken as giving the half widths Xy of the
distribution in a given coordinate while the off-diagonal elements
may be related to the correlations rij’ so
Xoi = V954
rij = Uij/vciiojj (9)
Since, for any positive definite symmetric matrix o, we have:2

2
94 cjj - Oij > 0 (10)
the correlations must all obey the inequality

lr,.] <1 (11)

ij|
If the ellipsoid is interpreted as describing the envelope

of a uniform distribution, then the Xoi represent the maximum

extents of the beam in the given coordinates.

III. The Effect of a Beam Line

A, First Order

If we now let xgl) be the coordinates of a ray at the

initial point in a beam line, and xéz) the coordinates at some

later point, the two are related by the eguation:

(2) _ (1)
X = § Rij Xy (12)

If we continue to assume a distribution centered at the origin
the first moments at both initial and final point will be zero.

The second moments will now be given by:
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(2y _ {2y _(2y _ . Ay 1y
Gij = xi xj = iz Rik Rjz xk x£ (13)
_ (1)
o Fix Rye Oke

or more concisely

0{2) = po(1)RT

(14)
To first order an ellipsoid at the initial point will
transform into an ellipsoid at the final point, so that the
equation:
T
x(2) oo (20)71 (2 _ (15)

will give the envelope of the particle distribution at the later
point.

B, Second Order

In second order the transformation on the coordinates

effected by the beam line is given by:

O TN L I b (16)

(2) (1)
X, =L R,. x_ .
. fj 3 5k ijk 73 k

i
J
We employ here a symmetric T matrix whose off-diagonal elements

are half those of the T matrix used by Brown. The first and

second moments of the distribution at the final point are now

given by:
x!zj = I R,. xglj + £ T, . ;TI] xtlj (17)
i . i3 73 . ijk 73 k
3 ik
(2) (2) &) (@8]
X X z R, R. x x
i b k2 ik 32 7k 2
r 1M (1 .M
iRk Tiam t Tixe Rym Xk X7 ¥
+ 3 7 x(l) ‘(l) x(17'x(l)

o T >
Kk imn ik “jmn “k L m n
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For a symmetric, on-axis initial distribution, the {irst and
third moments vanish. The problem now reduces to dctermining
the fourth moments of the initial distribution.
As an extension of previous notation we now denote the

fourth moments of the distribution about the initial point by

(1)
%i4ke-

second moments Oij is diagonalized, denoting the moments in

We consider the coordinate system in which the matrix of

this frame by . Then from equation (7) we have:

Y
.. = L Oik sz )

11 ke
-

n,
: Oix %5k %kk

(18)

We continue to specialize to a gaussian distribution so that
the fourth moments will be directly derviable from the second
moments. In the diagonal frame the coordinates separate, and

the fourth moments are easily calculated. The only ones which

- N v r 3 £ . . q o
are non-zero are Oiijj’ cijij’ o cijji or i # j, an O iii
with:
") v ")
oiijj =054 ojj (19)
N N N
C..:2 = O.. O..
1j1ij3 i1 ]
N v N
Cizss: = O O
1])31 ii 33
N A a
C..:.. = 3 0.,. 0O,
iiii ii il
so that in general:
Y n, N n v
i5ke = 855 ke %31 %kk * Sik %52 %ii %33
+ 8., 6., O.. O.. (20)

i2 “jk Tii T33.
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Now if under thc transformation O, the fourth moments transform
as:

n
Oijkxe = inop Oim Ojn O%o olp %mnop (21)

then from equation (la) we finally arrive at:

Oi5ka = %i5 ket %ix Y42t %ig %5k (22)
Substituting into equation (17) we determine that:
(2) (1)
X, = T.. o. (23)
i Sk ijk “Jjk
2 2) _ (1) (1) (1)
¥i%5 T Rak Ry ke 2 T Okpt) (B Ty Ong )
(1) (1)
*2L o T %' E Typn Ogn )

Note that, because of the symmetry properties of both T and ¢
that the two expressions in parentheses in the last term of the
second equation represent the same array. From a practical
standpoint this means that it needs to be calculated only once.
We see from eguation (23) that the centroid of the distribu-
tion at the final point no longer coincides with the beam axis.

(2)

Letting © represent the matrix of second moments about the

new centroid we now have:

oéi) = ;}2) xgz) - xiz) xgz) (24)
- (1)
=Rk Ry %k

(1) (1)
t 2 im (i Tixe %km ! (ﬁ Tsmn 9gn )

IV, Off-Axis Initial Distribution

Now consider a gaussian distribution whose center does not



- 208 - FN-243
2042

coincide with the beam axis. Letting the coordinates of the

centroid by xilj, we have for the coordinates of a ray:

X.

(1y _ - (1) .
X = x; + gi (25)

We let the matrix ¢ represent the moments of the distribution

about its centroid so that:

1) I7 _ (1)

gi gj _Oij (26)
1y (1) (1) (1) - (1)
8 8T T &y = 9ijk2

Equation (17) continues to hold for the moments of the distribution
about the b eam axis, while equation (22) holds for the moments
about the centroid. We must therefore express one set of moments
in terms of the other.

Using equations (22), (25), and (26) and applying the first
part of eguation (24) to the initial distribution, the initial
third and fourth moments are given in terms of the initial

first and second moments as follows:

MR R e I e
LRI T T T
k i 3 i 3 k

i 3j k i xj k % 3
+ xél) xél) x;l) xél) -2 xil) xgl) xél) xél]
(27)

Substituting into equation (17) and rearranging terms we arrive
at the following expressions for the first and second moments

of the distribution at the final point.
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xi2 = z Ri. le + I Tijk le xk )
j jk (28)
2) 2y _ (1) (1) (2) (2) _ (2) (2)
Xi xj il Rik le Xy xR + xi xj 2 Xi xj
(1) (1) (@) (1)
t2ro Ry g A pTike ¥k Xm0 ) Ry xpT ¥
e, o x koo R ™y (2R, )
jmn g n ik “k jm “m
n k m
where
X!z) = I R. x(lj + I T, x{ ) lej
i k ik Tk ke ikf Tk 2

is the image of the original centroid.
We may now again use equations (9) and (24) to relate this
matrix of second moments to the final beam half widths and

correlations.
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A Systematic Procedure for Designing High Resolving Power Beam Transport Systems
or Charged Particle Spectrometers

The following is a report submitted to the Third International Magnet
Symposium held in Hamburg, Germany - May 1970. It is a general description of a
suggested procedure for designing systems to any order and includes the derivation
of the coupling coefficient of an nth-order multipole to any nth-order aberration
coefficient. The report also derives the multipole strengths for the three
techniques for introducing multipole components into a system: namely, 1) pure
multipole fields, 2) non-uniform fields, and 3) contoured entrance or exit boundaries
of magnets.

The notation used in this report is identical to TRANSPORT notation
except for the following:
Replace x' and y' in the report by © and @ respectively to convert to

TRANSPORT notation.
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REPORT SUBMITTED TO THE THIRD INTERNATIONAL MAGNET SYMPOSIUM
HELD IN HAMBURG, GERMANY-May 1970

by

Karl L. Brown
Stanford Linear Accelerator Center
Stanford, California

Summary

By extrapolating the systematics of the general first- and second-order
theory of beam transport opties (1,2,3) to include higher order multipole
terms, it has been possible to evolve a simple, step by step, procedure for
the design of high resolving power static-magnetic beam transport systems.
The choice of the appropriate dipole and quadrupole elements for a given system
may be determined once the resolving power, solid angle, momentum range and
detector system of the instrument have been specified. The partial derivative
of any nth-order aberration coefficient with respect to an nth-order multipole
component located anywhere in the system has been derived. From this "coupling
coefficient”, the strength and the optimum location of multipole element(s) to

correct or modify a given aberration or group of aberrations is uniquely deter-
mined.
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I. Introduction

Within the last two decades, significant advances have been made in the
understanding of charged particle optics. Perhaps the first major contribution
was the development of the theory of the Alternating Gradient Synchrotron (A.G.S.)
by Courant, Livingston, and Snyder(4) which led to the first-order matrix algebra
formulation of beam-transport optics. Subsequent to this a second-order matrix
algebra was developed by Brown, Belbeoch, and Bounin(5); followed by the develop-
ment at SLAC of the digital computer program called TRANSPORT(6) that is widely
used today in many laboratories for solving first~ and second-order static-
magnetic beam transport problems. In principle, the second-order matrix formalism
may be extended to any order, but in practice this approach has proved to be too
cumbersome. Thus beyond second-order it has been more efficient to use computer
ray-tracing programs which integrate the basic differential equation of motion
of the charged particles through the known or assumed magnetic fields. The funda-
mental difficulty with ray-tracing has been the required computational time to
complete a design involving the minimization of many higher-order aberrations.

In this report, we will outline a systematic procedure for the design of
high-resolution systems based upon the extrapolation of the first- and second-
order theory (1,2,3) to include higher-order multipole components. A general
equation has been derived for the coupling coefficient of an nth-order multipole
to any given nth-order aberration coefficient. As will be shown later, these
coupling ceoefficients are a function only of the characteristic first-order
trajectories (matrix elements) introduced and defined in References 1 and 2.

Given this information, a systematic procedure for designing high resolu-
tion beam transport systems is as follows:

1) Find a satisfactory first-order solution to the problem using
TRANSPORT or its equivalent.

2) Calculate and make the necessary corrections to the second-order
aberrations by introducing sextupcle components into the system.
The "best" locations and strengths of the sextupole components
required may be selected via the coupling coefficients for the
aberrations to be minimized.

3) Calculate and make the necessary corrections (via ray-tracing) to
the third-order aberrations by introducing octupole components into
the system. (Note that an nth-order multipole couples with terms
of order n or higher but not with terms of order lower than n. Thus
an octupole component will not disturb the first- and second-order
solutions already found from steps 1 and 2.)

4) Repeat the above procedure up to the multipole order desired or
needed to achieve the design objectives.

If the design requires a solution to nth-order and m multipoles at each
order are necessary to minimize the aterrations, the number of computer runs
previously needed to complete a design was at least (n+m)©. Having & know-
ledge of the coupling coefficients, after the first-order design has been
selected, now (in principle) reduces the number of computer runs required to
n. Since ray-tracing is very time consuming, this is indeed a significant
saving.



- 214 -

II. Theory*

The following results are applicable to static-magnetic charged particle
optical systems possessing median plane symmetry. As in Ref. 1, we shall use &
right-handed curvilinear coordinate system (x,y,t) where x and y are the trans-
verse coordinates. x is the outward normal distance in the median plane away
from the central trajectory, y is the perpendicular distance framn the median
plane, t is the distance along the central trajectory, and h=h(t) is the curva-
ture of the central trajectory.

The existence of the median plane requires that the scalar potential'¢
‘be an odd function of y, i.e., ¥(x,y,t) = - ®(x,-y,t). The most general form
of @ may therefore, be expressed as follows:

o © & 2m+1
Wnyst) = D D, Aogan aT DT (1)
m=0 n=o
where the coefficients A2m+l,n are functions of t.

In this coordinate system, the differential line element 4T is given

by

dT2 = dx2 + dy2 + (1+hx)2 dt2

The Laplace equation has the form

1) 39 3% 1 d 1 )
v = (T = [‘l‘“hx)a] M crry N2 ma]-" (2)

Substitution of (1) into (2) gives the following recursion formula for the

coefficients:
= " 1 -
A2m+3,n A2m+1,n + nhA2m+l,n-l nh'Aémﬂ.,n-l * A2m+1,n+2 (3)
2 3
T L P n(n-1)%n Aom+l, n-1
+ 3nhA + 3n(n-1)h%A + n(n-1)(n-2)na
2m+3,n-1 2m+3,n-2 2m+3,n-3

d
where prime means It and where it is understood that all coefficients A with

one or more negative subscripts are zero. This recursion formula expresses all

% The notation used in this report follows that used
in Ref. 1 unless otherwise indicated.
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the coefficients in terms of the midplane field By(x,o,t):

where anB
A = (—l) = functions of t. ()
X=0

1,n 3
y=0
Since @ is an odd function of y, on the median plane we have Bx = Bt = 0. The
normal (in x direction) derivatives of By on the riference curve defines By over
the entire median plane, hence the magnetic field B over the whole space. The
components of the field are expressed in terms of @ explicitly by g = $¢ or

e © n 2m+1
Bx_g% = Z Z A2m+l n+l % 2m+1) !
m=0 n=0 ’ - °
2m
_acp _ ] o0 xn
By =5y = Z_: Z: Aom+l,n ot [Em)T
m=0 n=0
& il n _2m+l
_ 1 % _ 1 . x
Bt'(1+hx5 3t  (Ix) mz% r; A2m+l,n n' %Qm'+l)l (5)
The expression for the magnetic field on the midplane is
L] .n
X
B,(x,0,t) = nz% A, (6)

At this point we deviate from the notation and formaslism of Ref. 1 and
introduce Kn(t), the multipole strength per unit length; and S,» the total
multipole strength of a static-magnetic field.

We rewrite equation (6) as

00
n
B (x,0,t) = Bp :E: K (t) x (7
y n=o ©°
B Po
Where Bp = il is the magnetic rigidity of a particle of momnentum Po and

charge e along the central trajectory; from which

B!
0 = () () () (B ..
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We define Sn as

L

sn = f Kn(t)dt ' (9)

o

Sn so defined is the strength of the nth-order multipole component of a field

over the interval of integration.

Multipole Strengths for Pure Multipole Fields
Consider the scalar potential of an nth-order [2(n+l)pole]pure multipole

element:
B rn+l
° = 2L [sin (n+1) e] (10)
(n+l)a
where
X = 1r cosb and Y = r sin®

Bo is the field at the pole and a is the radial distance to the pole from the
central trajectory.
Expanding @ as a function of x and y and differentiating, we have

_ 09 Bo n
By = yy = —5 [x +¢¢tao.l]
a
From which
K = _BE. _];_
n an Bp
and

Where L is the length of the multipole element.
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For a dipole n=o0 and the dipole strength is

S =

o = Q (The angle of bend of the central traJjectory)

oI

For a quadrupole n=1 and

For a sextupole n=2 and

s_?g(;_
2 ~\ 2/)\Bpe
etc. for higher-order multipoles.

Multipole Strengths for a Non-Uniform Field Expansion

From the midplane field expansion of & non-uniform magnetic field
2 3
B(x,0,t) = B (0,0,t) [L-nhxtB(hx)"+y(hx) 4+ «+vveeo (12)
the multipole strength factors are:
K =h = - nh K, = Bh3 t
o TP K=o, Ky =Bh, ete.

and Sn evaluated over the length L of the central trajectory is:

w0
1l

hl. = & as before,

wn
]

- nhaL, and 52 = Bh3L, etc.

Multipole Strengths for a Contoured Entrance or Exit Boundary of a Magnet

A third method of introducing multipcle components is via & curved entrance
or exit boundary of a magnet. To calculate the multipole strengths in this case,

we integrate equation (7), holding x constant, as follows:

L L

n n
f B (x,0,t)at = Bp D x f K (t)dt = Bo ) S x (13)
o} (o]
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To relate this to the field boundary, we assume By to be a constant inside
the effective field boundary and zero outside (i.e., we ignore the finite extent

of the fringing field). In this sharp-cutoff approximation, the field boundary
Z = 2(x) is:

L
S
1 1 n 2 2
z =5 f By(x,o,t)dt = stnx =-xtan B + = x + *°° (1h4)
y 3
where h = % and B is the angle of rotation of the entrance or exit face of

the magnet at x=o. A positive B implies radial (x) defocusing and transverse

(y) focusing. We note that:

S1 = - h tan P = The "quadrupole strength"

The radius of curvature of the boundary is related to the sextupole strength

as follows:

28s

l Z" _ 2
- 2
R (l+Z‘2)3/ h sec3 B
or
3
8, = h s;g B~ The "sextupole strength"

From equation (13), we note that a positive multipole componernt of the field

increases the _/édt for a positive x; thus a positive sextupole is represented

by a concave surface of the entrance or exit boundary.

The Description of the Trajectories as a Taylor's Expansion

The deviation of an arbitrary trajectory from the central trajectory is
described by expressing x and y as functions of t. The expressions will also

contain Xg» Yoo xé, yé and &, where the subscript o indicates that the quantity
is evaluated at t=o. The prime (') denotes the derivative with respect to %,
and ® = %E is the fractional momentum deviation of the ray from that of

the cent;al trajectory. These five initial boundary values will have the value
zero for the central trajectory itself. x and y are expressed as a five-fold
Taylor expansion using these initial boundary values. The expansions are

written:
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(¢) = KA gth iU g Xy K o) 1M gV g X
x(t) :E:(x[xo Vo %o Yo O )xo Ve xs Yo 8

y(£) = (ylxXyhx™ y1¥ eX)xK yA it yi¥ gX (15)

Here, the parentheses are symbols for the Taylor coefficients; the first part
of the symbol identifies the coordinate represented by the expansion, and the
second indicates the term in question. These coefficients are functions of t
to be determined. The symbolzz: indicates summation over zero and all positive
integer values of the exponents Xk, A, 4, v, X; . The constant term is zero,
and the terms that would indicate a coupling between the coordinates x and y

are also zero; this results from the midplane symmetry. Thus we have

(x¢[1) = (y]1) = o
(xly)) = (vlx) = o
(xlyl) = (vlx)) = (16)

Here, the first line is a consequence of choosing the central trajectory as
the reference axis, while the second and third lines follow directly from
considerations of median plane symmetry.

Since they will appear often in the formelism, it is convenient to

introduce the following abbreviations for the first-order Taylor coefficients:

L}
i}

(x|x) = e (t) (xlxé)

< s (t) (x|8) =a_(t)

fl
L}

(vly,) e (t) (vl¥l) s (t) (17)

When the transverse position of an arbitrary trajectory at position t is
vwritten as a first-order Taylor's expansion as a function of the initial
boundary conditions, the above five quantities are Just the coefficients

appearing in the expansion for the transverse coordinates x and y as follows:

- t -
x(t) cx(t) x, + sx(t) x! o+ dx(t) % + higher-order terms

and

t) = t + ! - .
¥(t) Cy( ) Y, sy(t) y, + higher-order terms
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III. Solution of the Equations of Motion

The general differential equation of motion of a charged particle in a
static-magnetic field valid to all orders in x and y and their derivatives as

derived in Ref. 1, equation (5) is:

% }[x” - h(1+hx)]} - [xtx" + yiy" + (l+hx)(hx'+h'x)]}

T')2

+ ¥ {y" - # [x'x" + y'y" + (l+hx)(hx'+h'x)]}

(Zhx'+h'x) - %li%%l [x'x" + y'y" + (l+hx)(hx'+h'x)]}
Tl

+
ct>
P,

T {S‘c[y'Bt - (l+hx)By] + 3)[(1+hx)Bx - x'Bt]

eIE)

+ ?.[x'By - y‘Bx]} (18)

If this equation is solved to nth-order for the Taylor's coefficients
of equation (15), it will be observed that the result has the remarkabdbly

simple form:
t
KhgtHgtVeXy - 3| ___nt K Heeye ¥ o)X,
(xy [y Ty &%) [mm:u:x:] f 6,(t, TR N sk (s eIk (var
o
+ Terms containing Ko’ ceenaans Kn-l (19)

where the variable of integration is Tand n=(&K+ A+ p + V+ X).

The X, have the following meaning:
= = t = = s
x, = x(t) x, = x'(t) x5 = ¥(t) x), = y'(¢)

cx, c, sx, sy, and dx are defined by equation (17) and in general are func-

Y
tions of the variable of integration T over the interval of integration. Kn
is defined by equation (8) and in general is also a function of *.

The Gi's are Green's functions where:
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6,(6,7) = (x(£)[x'()) = s (e)e () - e (t)s ()
So(ts™) = (x'(&)[x'(D)= si(t)e (D) - el(t)s ()
6367 = (H()ly'(9) = s (teyf®) - e (t)s ()
o (5 = (y(®)ly(0)= site (T - e3(t)s () (20)

Note that the Gi‘s are Just first-order Taylor's coefficients measured from
the location (T) of the multipole component to the end of the system (t).

Thus we see that the coupling coefficient to an nth-order multipole is
a function only of the first-order matrix elements Cy? cy, Sx’ s&, dx and
their derivatives with respect to t.

From median-plane symmetry considerations, the allowed aberrations are
those with y and/or y' appearing an even number of times in the Taylor co-
efficient. For example (xlxg), (xly y ) and (ylyoy' are allowed aberra-

tions; whereas (xlyo), (x]xgyé) or (ylyo) are not allowed and are there-

fore equal to zero.

The minus sign is used when y and/or y' appear O, 4, 8, 12 ---+ times
arnd the plus sign is used when y and/or y* appear 2, 6, 10 ++++++ times, For
example for the coefficients (xlxg) and (y]yg), the minus sign is applicable;
whereas for the coefficients (xlyg) and (y'[&éyée) the plus sign is
applicable.

Equation (19) is derived by observing in the pattern of the solution of
the differential equation that an nth-order aberration term containing the
nth-order multipole strength factor Kn cannot include multipole strength factors
of lower order than n; or stated physically, an nth-order multipole cannot
couple to aberrations (terms) of order lower than n. This fact allows the

recursion formula equation (3) to be reduced to the simple form

A2m+3,n = - A2m+1,n+2 (21)

in so far as it applies to the derivation of nth-order terms containing only
Kn' As a consequence, the scalar potential for deriving these terms assumes
the simplied form

© o n _2m+l
Axy,t) = 3 > ()" Al enen 7T PomeD)T (22)
m=0 n=o0
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From which, il follows that

T 2] o
N {0 m !2m+n+].§'. n_2m+l
Bx(x,y,t) - (e > }E: :Z: (-1) K2m+n+l wi(emil): XY
m-0 IN=0
and
- P © ©_ s
{2m+n)! _n 2m
Bylxy,t) () 5 3, Sy (23)
m=0 u=0

For terms containing only Kn, the basic differential equations assume the

form:

lae 112
e

B_ (2k)

La ] K

Substituting the Taylor's expansion of equation (15) and solving for the
nth-order terms using a conventional Green's function solution (see Ref. 1)

yields equation (19) above.

IV. Interpretation and Use of Eguation (19)

For most practical cases of interest, Kn will be a constant over the
interval of integration. In this event we may define the coupling coefficient
of an nth-order multipole to an nth-order aberration as the partial derivative

of equation {19) with respect to the Kn in question as follows:

Kohp tho 1 U o X0 L :
B(xilxoyoxo yg &%) + n! HV.X
-t __nt KAHsYaXgc (25)
) Kn T T kU u I Gicxcy oy x >
<1

where now the interval of integration is over the multipole length L represented
by Kn' For a distributed multipole component (such as in & non-uniform field
bending magnet), eguation (25) is used.

In many cases where a curved entrance or exit pole contour is used or a
short multipole magnet is used such that the characteristic first-order func-
tions Cys cy, sx, sy and dx are essentially constants over the interval of
integration (the length of one multipcle), then the coupling coefficient is best

defined as the partial derivative of equation (19) with respect to s, &s follows:



- 223 -

K MY X+
a(xilxoycﬁxo yo 5 ) = * .
P UTHS ¢ Xy x

n' KA H V3 X
55, ] 6 exheyeyd (26)

Examples
Assume a situation where the end of the system is a point-to-point image

or the origin (i.e., sx(t)=o), then using equation 26, the coupling coefficients

of a sextupole of strength S2 to various second order aberration coefficients

are:
a(xlxéb) >
5_55———— = cx(t) Sy
3(x|x:?) 3
55, T %) %
x|y y!l)
g_gg_____ = -2 cx(t) cy S, Sy (27)

etc. Where the Green's function used in these examples is

G, = sx(t)cx - cx(t)sx = - cx(t)sx (since sx(t) =0 for ?01nt-to-point
' imaging)

The aberration and cx(t) are evaluated at the end of the system. cx(t) is
equal to the magnification Mx in the examples given. The remaining coefficients

c., S_, sy and dx are evaluated at the location of the sextupole S The

Yy’ Tx
above results are in agreement with Table VII of Ref. 1.

o

To illustrate a more complex example, consider the fourth-order aberra-
tion coefficient (ylygyés) and assume parallel-to-point imaging in the y
coordinate (i.e., cy(t) = 0). The appropriate Green's function is:

G = t -
sy( Ye c

3 y y(Bsy = sy(t)cy

and the coupling coefficient to a fourth-order miltipole of strength Sh is:

Ay lyZyre) bt
- . 3
T, o (57) sy(t)eysydy (28)
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2
wvhere again the aberration coefficient (yfyoyéé) and sy(t) are evaluated
at the end of the optical system and cy, Sy’ and dx are evaluated at the

location of the fourth-order multipole Su.

V. A Systematic Procedure for Designing High Resolution Systems

First-Order Considerations

In many respects, the determination of a satisfactory first-order magnetic-
optical design is more difficult to achieve than is the subsequent higher-order
design. This is true not only because the basic equipment configuration is
dominated by first-order optical considerations but also because the choice of
the first-order optics affects the magnitude of all higher-order aberrations
and the ease with which these aberrations may be minimized by introducing
multipole components into the design.

The dominating design parameters that must be clearly specified in order
to evolve a first-order design are the momentum resolving power; the spatial
resolution of the particle detector system to be used (this determines the
momentum dispersion required); the required Thase space acceptance (the solid
angle, the source size, and the momentum range) of the instrument, and the
first-order imaging requirements in both the x and y coordinates.

Given the above specifications (assuming they are self-consistent), the
optical mode and physical configuration of the instrument may be determined.
Often, more than one theoretical solution exists; in which case the choice is
usually resolved by practical or economic considerations. In other cases,
no solution is evident and the basic specifications must be modified accord-
ingly. In any event, the following equations and discussion are applicable to
the solution of the problem.

1) First-Order Resolving Power

A genersal equation for the first-order resolving power has been de-
rived in References (1,2, and 3). For point-to-point imaging the first-order
momentum resolving power Rl is defined as the ratio of the momentum dispersion
at the image plane to the total image size. Thus if 2xo is the total source

size then from Reference 1 we have:

d (t) p
P 1
L =55 = Qx: - = 2—x: f s (T)a(T)ar (29)
o

c X

Note that h(T1)dT = dQ is the differential angle of bend of the central trajectory
of the optical system.
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Equation (29) may be expressed in a number of useful forms. If we consider

a particle originating at the source with X, = © and & = %E = o and lying in

o
the midplane (i.e., a monoenergetic point source), the first-order equation of

its trajectory is

x(T) = s, (7)x! (30)

We may then rewrite equation (29) as follows:

t
(1-1)
R) = 1 /x(T)h(T)dT = 2 (31)
<

2x _x! 2x x!
oo oo

where (l-A%) is the path length difference between the trajectory described by
equation (30) and the central trajectory. Or we may also write equation (31)
in the form

t

t
D § Bx(tar|_[1 1
By = ox xt 6f 55 - (2x ) (ﬁ) f BdA (32)

x!
o 0 o o (o]

where _rBdA 1s the magnetic flux enclosed between the central trajectory and
the trajectory described by equation (30), and Bp is the magnetic rigidity of
the central trajectory. Please note, however, that if the trajectory of
equation (30) crosses the central trajectory or the sign of B changes, this
changes the sign of the integration. From equation (32) we may define resolv-
ing power as the magnetic flux enclosed per unit phase space area (2xoxé), per
unit momentum (BP) of the central ray.

In any given design, one or more of the above equations may be used as a
guide toward achieving the required resolving power. One of the design decisions
that must be made is the appropriate choice of the dipole magnet parameters
(width and length) to achieve the required _deA. From first-order considera-
tions, this choice is dominated primarily by practical and economic factors.
However, a study of the nature of the origin of aberrations (see for example
Ref. 1) suggests that it is advisable to keep the anplitude of Sy small. In
order to simultaneously satisfy this requirement and meet the required resolv-
ing power Rl, we see from equation (29) that the total angle of bend & of the
central trajectory should be chosen as large as is practical. Also, in genersal,
the focal plane angle tends to be more normal to the optic axis for larger
& - a property usually desired in most designs.
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2) Dispersion
From Reference 1, 2, or 3; for point-to-point imaging (sx(t)=o) the
dispersion at the image plane is
t

a(t) = - () J s (T)n()ax (33)

where cx(t) is the magnification at the image plane.

The dispersion and hence the magnification in the design of a spectro-
meter is dominated almost entirely by a compromise between the spatial resolu-
tion of the particle detectors used at the image plane and the momentum range
to be covered by the instrument; or in the case of a momentum defining (analyz-
ing) system, by the acceptable momentum-defining slit spacings.

3) The Selection of the Optical Mode

By optical mode, we mean the type of imaging (e.g., point-to-point
or parallel-to-point, etc.) required at the image plane in both the x and ¥y
coordinates, and the number of intermediate images imposed between the source
and image planes. The imaging requirements at the image plane are usually
dominated by the physics to be performed by the instrument and the nature of
the particle detectors used. However often (especially at low energies) the
imaging in the y plane may be unimportant as far as the physics requirements are
concerned which in turn provides some additional flexibility in the optics design.

A study of the coupling coefficients to the aberration coefficients
(equation 19) shows the not surprising result, that multipoles located at
intermediate images in a system do not couple to aberrations in the plane in
which the intermediate image occurs. Hence it often proves beneficial to
intentionally create an intermediate image in the y plane of an optical system
so as to achieve some degree of "orthogonality" in the minimizing of x and ¥y
aberrations.

The considerations of 1), 2), and 3) above are the determining factors
in the selection of the first-order solution of a system design.

The optical mode and dispersion of the system are determined to a great
extent by the choice of the quadrupole components chosen to achieve the first-
order imaging although it is clear that the dipole elements also influence the
first-order imaging to a greater or lesser extent depending upon the total
angle of bend of the system.

4) Averrations and their Correction

A study of the source of second- and higher-order aberrations (see

for example Ref. 1) suggests that it is advisable to maintain the characteristic
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first-order functions Cr S dx and cy, Sy and their derivatives as small as
is feasible through the magnetic elements of a system when choosing the first-
order design. This procedure will tend to reduce the initial size of the
aberrations and hence simplify the problem of minimizing them by the addition
of multipole components to the system design.

The procedure for minimizing aberrations has already been outlined in the
Introduction and as such will not be repeated here. The "key" to the minimiza-
tion procedure is the coupling coefficient given by the integral expression in
equation (19). The "best" location for the correcting multipole is where the
coupling coefficient has its maximum value.

The preferred method of introducing the multipole components, i.e., via
pure multipoles, contoured entrance or exit boundaries, or non-uniform fields
is a combination of practical and economical considerations ard, of course,
personal taste and experience. All three methods have been used with pure
multipoles dominating the situation for higher energy physics and the other two
methods dominating medium and low-energy physics applications. All three
techniques should be considered in any given design situation to be certain

that an important economic or practical advantage has not been ignored.
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