Appendix 1. Input Parameters Description

I. Element

Type	Code	Records	
Sentinel	SENT	1	
Dipole	DIPO	12	
ES Deflector	EDIP	8	
Multipole	POLE	8	
Multipole Corrector	MULT	6	
Solenoid	SOLE	4	
Velocity Selector	VELS	11	
Lens	LENS	2	
Shift-Rotate	SHRT	2	
Drift	DRIF	2	
Collimator	COLL	2	

A. Problem Definition (3 records)

Format

20A4

715

Record	Variable	
1	NTITLE -	Problem or other identifying description
2		Number of rays to be traced per energy. Number of integration steps per printed line NP=100+N - Print out every Nth step for central energy only.
		NP>200 - Omit all intermediate printout. Transfer matrix option (see Table below) Output coordinate axes option.
	JI OOAL	JFOCAL=0 - Intersection of Rays 1 and 2, or their projections on the xz plane, is used to
		determine the origin and orientation of the output coordinate system. z-axis oriented along direction of Ray 1.
		JFOCAL=1 - Origin of output coordinate system fixed at $z_D = 0$, where D denotes the final fixed coordinate system in the last element. The z-axis is oriented along the direction
		of Ray 1. The subroutines used for calculating the orbits through optical elements in RAYTRACE in general use either three or four fixed coordinate systems per element. The first and last are referred to as systems A and D.
		JFOCAL=2 - Output coordinate system is the D-axis system of the final element.
		Not used. A flag which is used to determine whether the rays to be traced appear as input in the data stream or are generated automatically by the
		program JNR=0 - Individual input rays appear in the data stream immediately following the SENTINEL terminator.
		JNR=2 - Input record after SENTINEL defines a pair of paraxial rays.
		JNR=6 - Input record after SENTINEL defines 6 rays describing the usual midplane point source problem.
		JNR=14 - Input record after SENTINEL defines 14 rays describing the full solid angle point source problem.

Record	Variable		Format
. 	rays describi	after SENTINEL defines 4 ng the full solid angle generurce problem.	
	NPLT - Plotting option. NPLT=0 - Normal. NPLT≠0 - Generate plo		

Transfer Matrix Options

Matrix	NR	NSKIP
Point Source (Midplane)	$6 \le NR < 14$	0
Point Source (Full Solid Angle)	$14 \le NR < 46$	0
Standard	≥ 46	0
None	Any	≠ 0

Energy	- Particle kinetic energy in MeV for first calculation	5F10.5
DEN	- Change in particle energy for successive runs	
XNEN	- Number of complete runs with successive energy	
	changes including first run. Default = 1.	
PMASS	- Mass of particle (AMU)	
Q	- Charge state of particle, units of electron charge.	
		1 4 4 4 A

⁻ If mass and charge are not specified, i.e. PMASS=0 and Q=0, the program assumes a relativistic particle with Q=1, v=c, and p=E in MeV/c.

B. Dipole (12 records)

Record	Variable		Format
1	DIPOLE		A4
2	LF1	- Entrance fringing field integration step size (cm)	6F10.5
	LU1	- Uniform field integration step size (cm)	
	LF2	- Exit fringing field integration step size (cm)	
	DG	- Differential step size used in determining	
		off mid-plane components of B using numerical	
		differential methods. Recommended for all four step	
		sizes: 0.3D (D=Gap) although LU1 can be made	
		larger to save computer time. For MTYP=6, DG	
		serves another function. See Sec. V. A.	
	MTYP	- Magnetic dipole option	
		MTYP=0,1 - Uniform field dipole. Fringing field	
		determined by calculation of the distance to the	
		effective field boundary in the z-direction.	
		MTYP=2 - Uniform field dipole. Fringing field	
		determined as described in Sec. V.A.	
		MTYP=3 - Non-uniform field dipole	
		with n-value and second-, third-, and	
		fourth-order corrections. Fringing field	
		determined as for MTYP=2, but including	
		n-value, etc.	
		MTYP=4 - Non-uniform field dipole - cylindrical	
		geometry. Similar to MTYP=3 but better	
		suited for purely conical pole pieces.	
		This option is used to describe magnets	
		with wedge-shaped gaps ("CLAMSHELL") by	
		making R large, PHI small, and by setting	
		BET1=GAMA=DELT=0 but n≠0, and normally	
		large because R is artificially large.	
		MTYP=5 - Uniform field dipole, circular pole option.	
		MTYP=6 - Pretzel magnet option.	
	IMAP	- Array number for generating and identifying fringing field	
		array maps. If IMAP=0, maps are not generated and the field	
		components are calculated directly for each point, i.e.	
		four times for each integration step. Two dipoles with	
		identical values of IMAP will share a common array. IMAP≤5.	
3	A	- Distance (cm) from origin of system A (initial)	5F10.5
		to system B (situated at entrance edge EFB of	
		magnetic element)	
		医乳头 医二甲基基氏性 计操作 化邻烷酸 经保证证 电压电压 化克克克氏病 斯克 医有效性 经营税	有效的对应

B. Dipole (12 records) - Continued

Record	Variable		Format
	B - Distance (cm)	from origin of system C (situated	
	at exit edge El	FB of magnetic element) to origin	
	of output syste	em D	
•	D - Gap width (cm	1)	
	R - Radius of curv construction of	ature (cm) used in geometrical f layout	
		of the field on the central	1
	200120 20 (2001	7	
4	PHI - Angular extent	t between the EFB of	3F10.5
	_	that of system C (degrees).	A Company
	· · · · ·	ivalent to the bend angle	
		the central trajectory and	
		the effective field boundary	
	(EFB) at entra		
		the central trajectory and	
		the exit boundary (degrees). Both	
		BETA are positive when the normals are	
		oit for positive transverse plane focussing.	
	Outside the Oil	Me for positive at ansverse practic rocassing.	
5	NDX - 'n-value', of fie	eld index for non-uniform	4F10.5
		(first-order term).	
		eld index for non-uniform	
	and the second of the second o	(second-order term).	
	-	eld index for non-uniform	
		(third-order term).	
		ld index for non-uniform (fourth-order term).	
	neid magnets (tourth-order term).	
e e	Z11 - Integration lim	nit (cm) defining the start of the	4F10.5
6		ing field zone in coordinate system B.	
	Normally posit		
		nit (cm) defining the termination of	
		ringing field zone in coordinate system B.	
	Normally nega Z21 - Integration lim		
		nit (cm) defining the start of the	
		eld zone in coordinate system C.	
	Normally nega		
		nit (cm) defining the termination of	
		ng field zone in coordinate system C.	
	Normally posit		

B. Dipole (12 records) - Continued

Record	Variable		Format
7	C00	- Coefficients used in the expansion of the	6F10.5
*	C01	fringing field fall-off at the entrance	•
	C02	of the magnetic element.	
	C03		
	C04	·	
	C05		·.
8	C10	- Coefficients used in the expansion of the	6F10.5
	C11	fringing field fall-off at the exit of the	
	C12	magnetic element.	
	C13		
	C14		
	C15		
	DD1	Co-cation for progence of constant field	6F10.5
9	BR1	- Correction for presence of constant field	01 10.0
	סתת	in region of entrance fringe field (Tesla).	
	BR2	- Correction for presence of constant field	Sava Company
		in region of exit fringe field (Tesla). In	
		the Split-Pole Spectrometer, BR1 and BR2 describe	
		the asymptotic field in the split.	
	XCR1	- Equivalent to a coordinate system shift (cm)	
		at the entrance (element SHRT) with $\Delta x = -XCR1$.	
		Used to correct for displacement of central ray	
		caused by extended fringing field (see Fig. 2). Use	
		XCR1=XCR2=0 unless the actual hardware element	
		will be offset.	
	XCR2	- Equivalent to a coordinate system shift (cm)	
		at the exit with Δx =XCR2. Used to	
		correct for displacement of central ray caused	
		by extended fringing field.	
	DELS1	- A correction to the location of the effective	
		field boundary. The effective field boundary at	
		entrance is moved towards the magnet (for positive	
		Δz) by an amount $\Delta z = \text{DELS1}*D$.	
	DELS2	- A correction to the location of the effective	
		field boundary. The effective field boundary at	
		exit is moved towards the magnet (for positive	
		Δz) by an amount $\Delta z = \text{DELS2}*D$.	
	and the second second	大大,我们就是一个大大的,我们就是一个人的,我们就是一个人的,我们就是一个人的,我们就是一个人的,我们就是一个人的,我们就是一个人的。""我们,我们就是一个人的	and the second of the

B. Dipole (12 records) - Continued

Record	Variable		Format
10	RAP1	- Inverse radius of curvature of entrance boundary	2F10.5
	RAP2	(cm ⁻¹). Convex surfaces are positive. - Inverse radius of curvature of exit boundary (cm ⁻¹). Convex surfaces are positive. In the	
		program, except for MTYP=5, circles described by RAP1 and RAP2 are approximated with an eighth-	
	WDE	order power series. - Mechanical width of the entrance pole boundary. Used only when IMAP is non-zero.	
	WDX	- Mechanical width of the exit pole boundary. Used only when IMAP is non-zero.	
11	S02 S03 S04	- Coefficients used in description of entrance boundary curvature. Contributions of RAP1 are added to those of S02, S04, S06, and S08.	7F10.5
	S05 S06 S07 S08		
12	S12 S13 S14	- Coefficients used in description of exit boundary curvature. Contributions of RAP2 are added to those of S12, S14, S16, and S18.	7F10.5
	S15 S16 S17 S18		

...

Record	Variable	:	Format
1	EDIP		A4
2	LF1	- Entrance fringing field integration step size (cm).	5F10.5
	LU1	- Uniform field integration step size (cm).	
	LF2	- Exit fringing field integration step size (cm).	
•		Recommended for these three step sizes: 0.3D (D=Gap)	
		although LU1 can be larger to save on computer time.	
	DG	- Differential step size used in determining off	
	23	mid-plane components of B using numerical	
		differential methods. Recommendation: DG=0.2D or smaller.	
	4.4	or smaller.	
Q	Δ	- Distance (cm) from origin of system A	5F10.5
J	A	(initial) to system B (situated at entrance	01 10.0
		edge EFB of electrostatic element).	
	В	- Distance (cm) from origin of system C (situated	
		at exit edge EFB of electrostatic element) to	
		origin of output system D.	
	D	- Gap width (cm)	
	R	- Radius of curvature (cm) used in geometrical	
		construction of layout	
	EF	- Electric field on the central orbit (kV/cm)	
4	PHI	- Angular extent between the EFB of system B and	5F10.5
		that of system C (degrees). Nominally equivalent to the	
		bend angle.	
5	EC2	- Coefficients describing second and fourth order curvature	5F10.5
	EC4	of the iso-field lines on the median plane in the	
		fringing field regions — due to finite width of the plates.	
	WE	- Plate width (cm).	
	wc	- Not presently used.	
6	Z 11	- Integration limit (cm) defining the start of the	4F10.5
		entrance fringing field zone in coordinate system B. Normally positive.	
	Z 12	- Integration limit (cm) defining the termination of	
		the entrance fringing field zone in coordinate system B.	
	701	Normally negative.	
	Z21	- Integration limit (cm) defining the start of the	
		exit fringing field zone in coordinate system C. Normally negative.	

Record	Variable	C. Electrostatic Deflector (8 records)		Format
Z 22		 Integration limit (cm) defining the termination of the exit fringing field zone in coordinate system C. Normally positive. 		
7	C00 C01 C02 C03 C04 C05	- Coefficients used in the expansion of the fringing field fall-off at the entrance of the electrostatic deflector.		6F10.5
8		- Coefficients used in the expansion of the fringing field fall-off at the exit of the electrostatic deflector.		6F10.5

D. Multipole (8 records)

Record	Variabl	e	Format
1	POLES	_	A4
2	LF1	- Entrance fringing field integration step size (cm).	3F10.5
	LU1	- Uniform field integration step size (cm).	
	LF2	- Exit fringing field integration step size (cm).	e de la companya de
		Recommended for all three step sizes: 0.3R	-
			470 F
3	. A	- Distance (cm) from origin of system A	4F10.5
		(initial) to system B (situated at	
A Section 18		EFB of entrance edge of magnetic element).	
	В	- Distance (cm) from origin of system C	
		(situated at EFB of exit edge of magnetic	
		element) to origin of output system D.	
	L	- Effective length (cm) of magnetic element.	
	R	- Aperture radius (cm).	
	PΛ	- Quadrupole component at r=R (Tesla).	5F10.5
4	BQ		0.0
	BH	- Hexapole component at r=R (Tesla).	
	BO	- Octapole component at r=R (Tesla).	
	BD	- Decapole component at r=R (Tesla).	
	BDD	- Dodecapole component at r=R (Tesla).	
5	Z 11	- Integration limit (cm) defining the start of the	4F10.5
		entrance fringing field zone in coordinate system B.	
t beginne fall		Normally positive.	
	Z12	- Integration limit (cm) defining the termination of	
		the entrance fringing field zone in coordinate system B.	
	13 6 4 12	Normally negative.	
	Z21	- Integration limit (cm) defining the start of the	
		exit fringing field zone in coordinate system C.	
		Normally negative.	
	Z 22	- Integration limit (cm) defining the termination of	
		the exit fringing field zone in coordinate system C.	
		Normally positive.	
	C 000		6F10.5
6	C00	- Coefficients used in the expansion of the	Ot 10.2
	C01	fringing field fall-off at the entrance	
	C02	of the magnetic element.	
	C03		
	C04		
	C05	진행 이 교육에는 이 원리인을 막으면 불가 되는 바람이라면 다른	

D. Multipole (8 records) - Continued

Record	Variable	Format
7	C10 - Coefficients used in the expansion of the C11 fringing field fall-off at the exit of the C12 magnetic element.	6F10.5
	C13 C14 C15	
8	FRH - Fractional radius of multipoles, in terms of quadrupole radius, used in calculating fringing field fall-off, e.g. FRH=0.9 makes the hexapole fall-off 0.9 ⁻¹ times faster with distance from the EFB than the quadrupole field.	8F10.5
	DSH - A correction for the effective length of individual DSO multipole elements relative to the quadrupole. DSD A positive DS represents a displacement inward of DSDD the EFB at the entrance and exit in units of R.	

E. Multipole Corrector (6 records)

Record	Variable		Format
1	MULT		A4
2	LF DG	- Integration step size (cm) - Differential step size (cm) used in determining off-midplane components of B using a numerical differential technique. Recommended for both step sizes: 0.3D	3F10.5
3	A B	 Distance (cm) from origin of system A (initial) to coordinate system situated at centre of multipole element. Distance (cm) from coordinate system situated at centre of multipole element to origin of output system D. 	6F10.5
	L W D BF	 Length of the Multipole Corrector (cm). Width (cm) of multipole element. Gap (cm) of multipole element. Nominal value of field at x = W/2 and z = 0, i.e. the value the field at x = W/2 will attain if one of the coefficients C0-C5 is equal to unity and the others zero. 	
4	Z1 Z2	 Starting point of integration measured from coordinate system at centre of multipole element (cm). Normally negative. Termination point of integration measured from coordinate system at centre of multipole element (cm). Normally positive. 	2F10.5
5	C0 C1 C2 C3 C4 C5	- Coefficients describing dipole, quadrupole, etc. content of the field. Normal range -1. to +1.	6F10.5
6	C6 C7 C8	 Not used. Coefficients used to define how the field varies with z/L, basically describing a bell-shaped curve. Typical values are C7=0.4, and C8=0.1 	3F10.5

F. Solenoid (4 records)

Record	Variable		Fo	ormat
1	SOLE			A4
2	LF	- Integration step size (cm) for all regions. Recommended: LF=0.2D		F10.5
3	A B L D BF	 Distance (cm) from origin of system A (initial) to the entrance edge of the solenoid element (i.e., edge of the hardware, not the EFB). Distance (cm) from exit edge of the solenoid element to origin of output system D Length (cm) of solenoid. Diameter (cm) of solenoid. Asymptotic magnetic field of solenoid (Tesla), i.e. BF= 0.4πIN/L 	5	F10.5
	Z11 Z22	 Starting point of integration measured from input egde of solenoid. Normally positive. Termination point of integration measured from exit edge of solenoid. Normally positive. 		2F10.5

G. Velocity Selector (11 records)

Record	Variable		Format
1	VELS		A4
2	LF1	- Integration step size (cm) of the entrance	4F10.5
·	41	fringing field region.	•
	LU1	- Uniform field integration step size (cm).	
	LF2	- Exit fringing field integration step size (cm).	
	DG	- Differential step size (cm) used in determining off	
	* .	mid-plane components of E and B using a numerical	
	The second	differential technique. Recommended:	
		LF1=LF2=0.3DE; LU1 can be larger; DG=0.2DE	
	and the second	or smaller.	
3	A	- Distance (cm) from origin of system A	5F10.5
		(initial) to system B (situated at	
		EFB of entrance fringing field)	
	В	- Distance (cm) from origin of system C	
		(situated at exit edge EFB of velocity selector)	
		to origin of output system D.	
	L	- Effective length (cm) of velocity selector.	
	\mathbf{BF}	- Magnetic field of velocity selector (Tesla)= B_y .	
	EF	- Electric field of velocity selector $(kV/cm)=E_x$.	
4	RB	- Equivalent radius required if NDX≠0.	2F10.5
- 7	NDX	- First order magnetic field index	
	11212		
5	DB	- Separation distance of magnetic poles (cm).	4F10.5
	DE	- Separation distance of electrodes (cm).	
	WB	- Width of magnetic poles (cm).	
	WE	- Width of electrodes (cm).	
6	Z11	- Integration limit (cm) defining the start of the	4F10.5
	4.1	entrance fringing field zone in coordinate system B.	
		Normally positive.	
	Z 12	- Integration limit (cm) defining the termination of	
	2	the entrance fringing field zone in coordinate system B.	
		Normally negative.	
	701	- Integration limit (cm) defining the start of the	
	Z 21	exit fringing field zone in coordinate system C.	
	700	Normally negative Integration limit (cm) defining the termination of	
	Z22	- integration time (city denting the termination of	
		the exit fringing field zone in coordinate system C.	
		Normally positive.	

G. Velocity Selector (11 records) - Continued

Record	Variable		Format
7	BC2 BC4 EC2 EC4	- Coefficients describing second and fourth order iso-field lines on the median plane in the fringing field region due to finite width of magnetic poles and electrodes.	4F10.5
8	CB0 CB1 CB2 CB3 CB4 CB5	- Coefficients used in the expansion of the magnetic fringing field fall-off at the entrance of the velocity selector.	6F10.5
9	CE0 CE1 CE2 CE3 CE4 CE5	- Same as CB coefficients, but for the electric fringing field.	6F10.5
10	CB10 CB11 CB12 CB13 CB14 CB15	- Same as CB coefficients, but for the magnetic fringing field at the exit.	6F10.5
11	CE10 CE11 CE12 CE13 CE14 CE15	- Same as CE coefficients, but for the electric fringing field at the exit.	6F10.5

H. Lens (3 records)

Record	Variable		 Format
1	LENS		A4
2	X/X X/T T/X T/T Y/Y Y/P P/Y P/P	- Matrix elements for the spatial coefficients of the transformation matrix of an arbitrary element. Units for lengths and angles are cm and mr, respectively. Particularly useful for an electrostatic Einzel lens, for instance, in an otherwise magnetic optical system. Note: the time variable t used in RAYTRACE is not updated through LENS even if the coefficients X/T and Y/P are used to describe a finite thickness.	8F10.5
3	E0	 Correction term for spherical aberration. Reference energy for chromatic correction to focal length. Index for chromatic focal length correction. 	3F10.5

I. Shift-Rotate (2 records)

Record	Variable		Format
1	SHRT		A4
2	X 0	- All following coordinate systems are displaced	6F10.5
		in the x-direction by an amount X0 (cm) as	
		measured in the preceding system.	
	Y 0	- All following coordinate systems are displaced	
		in the y-direction by an amount Y0 (cm) as	
		measured in the preceding system.	
	Zo	- All following coordinate systems are displaced	$(J_{i,j}, r_{i,j}) = (-\epsilon_i)$
		in the z-direction by an amount Z0 (cm) as	
		measured in the preceding system.	
	$\psi_{\hat{x}}$	- The rest of the optical system as a	
	-	unit is rotated ψ_x (degrees) about the x-axis	
		of the preceding system.	
	$oldsymbol{\psi}_{\hat{oldsymbol{y}}}$	- The rest of the optical system as a	
	79	unit is rotated ψ_y (degrees) about the y-axis	
		of the preceding system.	
water training	.	- The rest of the optical system as a	
	$\psi_{\hat{z}}$		
	m in De Liberari	unit is rotated ψ_z (degrees) about the z-axis	
		of the preceding system.	

J. Drift (2 records)

Record	Variab	le			Format
1	DRIF				A4
2	DZ	- Field free drift les	ngth (cm)		F10.5

K. Collimator (2 records)

Record	Variable	٠.			Format
1	COLL	.*			A4
2	J - Shape index. J=0, rectangular collimator J=1, elliptical collimator				 5F10.5
	X0 - x-coordinate of collimator center				
	Y0 - y-coordinate of collimator center XMAX - Half-axis in the x-direction YMAX - Half-axis in the y-direction			%	

L. System End (1 record)

Record	Variable	Format
1	SENT - Record separating input data defining the magnetic	A4
	elements of the system from the data specifying the input coordinates of the different rays to	
	be traced through the system.	

M. Input Rays

A. Individual Rays (JNR=0, NR records)

Record	Variable		•	Format
1→NR	XI	- Particle x-coordinate (cm) at origin of system A for the first element.		7F10.5
	VXI	- Angle (mr) of particle trajectory projected on xz-plane.		
	ΥI	- Particle y-coordinate (cm) at origin of system A for the first element.		· ·
	VYI	- Angle (mr) of particle trajectory projected on yz-plane.		
	ZI	- Particle z-coordinate (cm) at origin of system A for the first element.		
	VZI DELE	- Not used - Kinetic energy deviation (%) of particle from		
	2200	central energy		

B. Program-generated rays (JNR \neq 0. One or more records)

Record	Variable							Format
1	TMIN	- - Paraxial mi	dplane an	gle (mr)	for Ray 2.			7F10.5
	PMIN	- Paraxial tra				Ray 2.		egar ja lita
	XMAX							
		all rays. Fo midplane de		, maxim	um non-poi	nt sour	e:	
		- Maximum					gle	
	YMAX	- For JNR≠4						
		all rays. Fo			um non-poi	nt sour	:e	
		transverse j						
	PMAX	- Maximum	ingle (mr)	defining	transverse	plane		
		angle.						
	DMAX	- For JNR≠4						
		all rays. Fo					n (%)	
		defining lon	gitudinal	phase sp	ace accepta	nce.		
2→(NR-JNR)		Any number be added to NR must b	the singl	e line for	program-g	enerate	d rays.	

Appendix 2. Samples of Input Data Files

A. Magnetic Dipole, MTYP=2.

```
FILE: DIPOLE.DAT HAE 4/16/86
03, 500, 0, 2, 0, 00, 01
300., 10., 1.
DIPOLE D1
3., 10., 3., 1., 2.
200., 200., 10., 100., 1.000
90., 27., 27.
٥.
40., -20., -20., 40.
.2401, 1.8369, -.5572, .3904
.2401, 1.8369, -.5572, .3904
1., -2., 0., 0., 0., 0.
1., 2., 0., 0., 0., 0.
SENTINEL
٥.
0., 20.
0., -20.
2., 1., 0., 25., 0., 20.
```

B. Electrostatic Deflector

```
FILE: EDIPL.DAT - ELECTROSTATIC DEFLECTOR - HAE 2/26/86
1, 100, 0, 2, 0, 00, 00,
5., 1., 1., 200., 1.0,
SHRT
-.1
EDIPOLE
.5 , .5 , .5 , .5
25., 25., 4., 100., 100.
10.,
.3, .1, 10., 0.,
8., -5., -5., 8.,
.3813, 1.6370, -.64083, .36664, 0., 0., .3813, 1.6370, -.64083, .36664, 0., 0.,
SHRT
.1
SENTINEL
٥.
```

C. Pretzel Magnet

```
FILE: PRETZEL.DAT HAE 3/16/85
3, 500, 0, 2, 0, 00, 01
5., 5., 3., 100., 10.
DIPOLE D2
2., 2., 2., -.2, 6.
75., 75., 10., 0., 1.
270., 45., 45.
.806
٥.
٥.
٥.
O.
٥.
0.
٥.
SENTINEL
0.
1.
0., 0., 1.
```

COMMENTS:

- 1. FREE-FLOATING FORMAT WITH COMMAS APPROPRIATE FOR VAX COMPUTER
- 2. THE DIGIT 2 IN RECORD 2 PRODUCES OUTPUT IN THE D-AXIS SYSTEM
- 3. LAST DIGIT 1 IN RECORD 2 CREATES A PLOT FILE
- 4. DG=-.2 (RECORD 5) IS APPROPRIATE FOR PRETZEL MAGNETS ONLY. SEE TEXT.
- 5. R=O (RECORD 6) IS APPROPRIATE FOR PRETZEL MAGNETS ONLY

D. Clamshell Spectrometer

```
QCLAM - U of I P=400 MeV/c (alpha=beta=-7) 10/20/84.
03, 500, 0, 0, 0, 00, 01
360., 40., 3.
POLES
4., 4., 4.
50., 37., 50., 12.0
-.474, .142, .081, .028, .015
30., -18., -18., 30.
.1122, 6.2671, -1.4982, 3.5882, -2.1209, 1.723
.1122, 6.2671, -1.4982, 3.5882, -2.1209, 1.723
0.9, 0.8, 0.7, 0.6, .025, .050, .075, .10,
SHRT
0., 0., 0., 0., -60.
DIPOLE
4., 8., 4., 1., 4.
0., 0., 15.00, 133333., 1.6062
.0371, -67., 0.
804.
60., -40., 0., 0.
.2401, 1.8639, -.5572, .3904
-10., 0., 0., 0.,
0.
0.
530., -3.12E6, 5.9E9, -4.0E12,
DIPOLE
4., 8., 4., 1., 4.
0., 0., 15.00, 133333., 1.6062
.0371, 0., -67.
804.
0., 0., -40., 60.
-10., 0., 0., 0.,
.2401, 1.8639, -.5572, .3904
0.
0.
0.
-483., 1.0E5, -1.0E8, -2.0E11, 1.E14
0., 0., 0., 0., -60.
DRIFT
120.
SENTINEL
0.,
0., 100.
0., -100.
10., 1., 0., 100., 0., 100.
.5, 0., 0., 0., 0., .086
```

.5, 100., 0., 0., 0., 0., .086 .5, -100., 0., 0., 0., 0., .086