
lY?O IEEE Trunsnctmns on Nuclrar Sciancc, Vol. NS-J?, x0. 5, october 1985 
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Summary 

lhis paper reviews the formalism of maximum en- 
tropy beam diagnostic tomography as applied to the 
Fusion Materials Irradiation Test (FMIT) prototype 
accelerator. The same formalism has also been used 
with streak camera data to produce an ultrahigh speed 
movie of the beam profile of the Experimental Test 
Accelerator (ETA) at Livermore. 

Introduction 

Intense particle beams require noninterceptive 
diagnostics. One of these is the light emitted from 
interaction of the beam with residual gas. If the 
light is produced by a first-order process linear in 
the beam density, its profile measured across the beam 
may be interpreted as a tomographic projection of 
that density distribution.lM4 With a small number of 
such projections, and appropriate transfer matrices 
connecting them, Minerbo'sse6 maximum entropy algo- 
rithm may be used to construct an estimate of the beam 
density distribution in both coordinate and phase 
space. The objective of this paper is to provide a 
concise review of this formalism and some of its ap- 
plications to accelerator diagnostics. 

Formulation of Problem 

The problem is defined in a Cartesian coordinate 
system (x, Y, z) with the z axis in the beam direc- 
tion. The quantities being sought are the two- 
dimensional functions f(x,y), representing the density 
of the beam in the plane z = 0, or the phase-space 
density distribution f(x,x') where x' = dx/dz is the 
slope of the trajectory and is proportional to the 
transverse momentum. 

The observed data is a set of N different projec- 
tion integrals, defined by 

p,(s) = Im f(x,(s,t), y,(s.t)) dt , 
4 

(1) 
n=l,Z,...N . 

Each projection is specified by a different pair of 
coordinate transformation functions 

x = xn(s,t) and Y = Yn(s,t) (2) 

that give the mapping between the (x,y) plane and the 
(s,t) plane with s the projection sample coordinate, 
and t the transverse integration coordinate. Each 
projection integral provides a different "view" of the 
same (unknown) function f(x,y). This concept is eas- 
ily visualized in the case of spatial reconstruction, 
where the views are taken at different angles about 
the beam axis (see Fig. 1). The nth pair of trans- 
formed coordinates are then specified by a simple 
rotation matrix 

S 

H! 

cos 0 n sin e n 
= (3) 

t, -sin e cos e n n 
from which we obtain 

*Work supported by the US Department of Energy. 
fMost of this work was performed while the author 
was at EG&G, Los Alamos. 

Fig. 1. The geom- 
etry of tomo- 
graphic projec- 
tion for spatial 
reconstruction 
(t signs). 

xn(s,t) = s cos 0, - t sin 0, and 
(4) 

yn(s.t) = s sin 8, + t cos en . 

For the emittance (phase-space) reconstruction, 
observations are taken from a series of stations at 
different z-coordinates down the beamline. The pro- 
jection sample coordinate at the nth station is just 
s = x, the spatial coordinate across the beam. The 
coordinate being integrated over is the trajectory 
slope t = x'. 

We assume these (s,t) coordinates for the nth 
station are related to the (x,x') coordinates in the 
reconstruction plane at z = 0, by an arbitrary linear 
transport matrix A,: 

(I)= [al(:) = [:: ::](:, . 
The Jacobian of the transformation is 3, = detlA,I 
= and, - b,c,. Because J, is the area of the (s.t) 
plane corresponding to a unit area in the (x,x') 
plane, it specifies the emittance change between z = 0 
and station n (z = zn). From the inverse matrix, we 
obtain in general 

x = x,(s,t) = (d,s - b,t)/J, and 
(6) 

X’ = y,(s,t) = (ant - c,s)/.J, . 

Note that the s axis maps into a line through the 
origin with slope -c,/dn. The integration direction 
for the nth view is parallel to the image of the 
t-axis, namely, a family of lines with slope -an/b,. 
The simplest example is a linear drift for which 

(7) 

In thisLcase, theis-axis maps onto the x--axis, while 
the t--axis projection integration lines have a slope 
-l/z,. Note again that we are treating each observed 
projection as a view in a different coordinate system 
of the same, fixed, phase-space distribution function 
f(x.x'). But in the (x,x') plane, the projection and 
sample axes for the other views are in general not or- 
thogonal. This interpretation is in contrast to the 
more usual one of the distribution function executing 
a kind of generalized rotation and distortion, in 
local (x,x') coordinates, as the particles move down 
the beamline. 
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The Maximum Entrgy Principle_ 

The FM11 prototype accelerator at Los Alamos is 
equipped with eight data-collecting statiohs capable 
of measuring such projections (three using mirrors and 
TV cameras, the rest using fiber optics and Reticon 
linear arrays. Given a set of projection data of the 
type described by Eq. (l), we would like to invert it 
to find f(x,y) or f(x,x'). If, in the rotation case, 
we knew the projection as a continuous function of an- 
gle, the Radon transform would give a unique inverse. 
In medical tomography, hundreds of data views are 
taken to approximate this result. For accelerator 
applications, however, we can have only a few views, 
usually 3 or 4. In this case the inversion is not 
unique, and we need a mechanism for constructing an 
estimate of f(x,y) that incorporates everything we 
know, and nothing else. The maximum entropy principle 
offers a natural way for doing this.'-9 It argues 
that, of all the possible distribution functions 
f(x,y) that satisfy the observed constraints 
[Eq. (l)], the most reasonable one to choose is that 
one that nature can produce in the greatest number of 
ways, namely, the distribution having maximum entropy. 

The entropy of a distribution f(x,y) may be de- 
fined as 

H(f) = -]I dxdy f(x,y) In f(x,y) . (8) 

This formula is the unique measure of the multiplicity 
of the microstates consistent with a given distribu- 
tion. It may be derived from the functional equations 
expressing the logic of combining probabilities, or 
from a direct counting of the number of independent 
ways of distributing N particles over M cells of phase 
space. This number is given by 

w= 
N! 

n,!n! . ..n! ' 2 m 

where ni is the number of particles in the ith cell. 
If we set ni = Nfi, so that fi = the fraction of par- 
ticles in the ith cell, and use Stirling's approxima- 
tion, neglecting terms of order l/N, we get 

M 
l/N ln W = - 1 fi In fi , 

i=l 
(10) 

which is the discrete analog of Eq. (8). 
Equation (10) implies that an N particle distri- 

bution with entropy H corresponds to a multiplicity 
W = exp NH. This means that, if the a priori proba- 
bility of a given distribution is proportional to the 
number of ways it can be produced (that is, its multi- 
plicity), nature strongly favors the maximum entropy 
distribution, in the sense that a unit increase in 
entropy corresponds to a factor of eN in multiplicity. 

Therefore. of all the distributions that satisfy 
our data constraints [Eq. (l)], we want the one having 
maximum entropy, as defined by Eq. (8). Its construc- 
tion is a straightforward variational calculus prob- 
lem outlined in the next section. Its nature may be 
surmised by noting that the unconstrained maximization 
of entropy always leads to the uniform distribution 
fi = l/M. For the constrained problem then, the dis- 
tributions of lesser entropy are presumably not as 
smooth as the favored one, and contain various oscil- 
latory terms that integrate to zero in the directions 
of observation, leaving no evidence in the projection 
data. 

The Maximum Entropy Solution ------ -. -_--.- 

The method of ILagrange multipliers is used to 
maximize the entropy of Eq. (8) subject to the con- 
straints of Eq. (1). Form the Lagrangian functional 

$(f.X) = H(f) t 

! I ds An(s) [I dt fly,, Y,) p,(s)1 , (11) 
t-i=1 

and demand that it be stationary with respect to var- 
iations in both the unknown two-dimensional function 
f(x,y) and the N unknown one-dimensional Lagrange mul- 
tiplier functions X,(s). By construction, the condi- 
tion 60 = 0 under the variation X,(S) + X,(S) t ax,(s). 
for arbitrary &h,(s), only reproduces the constraint 
Eqs. (1). What remains is to demand 6~ - 0 under the 
variation f(x,y) + f(x,y) + bf(x,y), for arbitrary 
df(x,y). The variation in the entropy term is 
immediately 

&H = - ]] dxdy [1 t In f (x.y)]&f(x,y) . (12) 

To collect the coefficients of &f(x,y) from the summa- 
tion term is a bit more difficult. It requires the 
observation that each of the double integrals on s and 
t is over the entire plane, and can be transformed 
back to the (x,y) coordinate system through the in- 
verses of the N different mappings specified by 
Eq. (2). For the nth mapping, we denote by s,(x,y) 
the function giving the value of s corresponding to 
the point (x,y). In the case of simple rotations con- 
necting the views, this is 

s,(x,y) = x cos en c y sin en . (13a) 

In the emittance case, y is replaced everywhere by x', 
and Eq. (5) gives 

sn(x,x') = a,x -t b,x'. (13b) 

After these coordinate transformations, the variation 
of the sum term may be written 

,;, II $,(s,,(x~Y)) 6f(x,y) J,,dxdy 9 (14) 

where J, is the Jacobian of the transformation, a con- 
stant for the linear transformations considered here. 
For the rotational case, J, is always unity, whereas 
for the phase-space reconstruction, J, gives the 
change in emittance (phase-space area scale) between 
the reconstruction plane and the nth data station. 
Normally J, =. 1 in this case also. The terms involv- 
ing the data pn(s) may be ignored because they do not 
depend on f. 

We may now collect all the coefficients of 
&f(x,y)l from Eqs. (12) and (14) to find the condition 
that I+ be stationary under variations in f: 

N 
In f(x,y) = 1 J,x,(s,,(x.~)) - 1 . 

n=l 

Because at this point, the Lagrange multipliers 
h,(s) are still unknown, it is convenient to 
replace them by equally unknown "Lagrange factors" 
hn(s) = exp(Jnhn(s) - l/N) in terms of which 
the maximum entropy distribution takes on a simple 
product form 

(15) 



N 

f(x,y) = IJ h,[s&Wl . 
n-l 

(16) 

Substitution of this form into the constraint Eq. (1). 
results in a set of N simultaneous nonlinear equations 
for the N unknown one dimensional functions h,(s). 
Minerbos first noted the remarkable fact that, at 
least for linear transformations, h,(s) always factors 
out of its own constraint integral 

P,,(s) = h,(s) J dt k:n hk[sk(xn,Yn)l . 

He was therefore able in his MENT algorithm to use a 
very fast Gauss-Seidel iteration technique to solve 
for the h,(s). A modified solver has since been 
written by the author to improve the stability of the 
algorithm in the presence of noise. 

In summary then, the maximum entropy distribution 
is favored as the one most easily produced by nature, 
and its form is always a simple product of Lagrange 
factors h,,(s), one for each view. The arguments of 
the one-dimensional functions hn(s) are completely 
specified by the geometry, and their shape is adjusted 
to make the projections of the two-dimensional product 
function agree with the given data. The simplicity 
and generality of this result make it useful for many 
purposes, including noninterceptive beam diagnostics. 

In the FMIT system at Los Alamos, this MENT algo- 
rithm is running as part of an integrated software 
system on an LSI 11/23 mounted in the same diagnostic 
node (where the data is recorded. The solution usually 
converges in about 5 iterations, each of which takes 
a few seconds in the typical case of 3 or 4 views of 
25 samples each. Figure 2 shows normalized projection 
data (+ signs) and the reprojected solution at 3 loca- 
tions on the FMII beam line. Figures 3 and 4 show 
contour and isometric plots of this emittance 
distribution. 
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Fig. 2. Three views of profile data and maximum 
entropy fit. 

Streak tomography is another application of this 
algorithm in which the time dependence of the instan- 
taneous optical projection is recorded by a streak 
camera.'O The streak image is raster scanned, and 
lhis algorithm is used to construct a two-dimensional 
frame of an output movie from the projection data 
stored in each scan line. In an experiment at Liver- 
more, three views of the cross section of the electron 
beam pulse in the ETA were recorded with a streak cam- 
era." The resulting time-slice profiles were proc- 
essed at EG&G, Los Alamos, into a 700-frame video 
movie representing 42 ns of real time, thus demon- 
strating the feasibility of the technique. 

Fig. 3. Isometric display 
of maximum entropy solu- 
tion for phase-space dis- 
tribution function. 
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Fig. 4. Contour plot of maximum entropy solution for 
phase-space distribution function. 
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