|
When trying to understand the optical design of an existing Medical Gantry for Proton-Therapy, then the
compactness (e.g. no space-consuming modular waist to waist transport system is acceptable here) and the large
90 to 135 degree bending magnet (focusing properties, momentum-dispersion) at the end of the gantry is
usually causing some headache to newcomers in this field. Especially the fact, that the dispersion at the beginning
(matching- or rotation-point) and at the end (iso-center, location of the tumor to be irradiated) must be zero
(D=D'=0) or (R16=R26=0). The first order input files for the Graphic Transport Framework for three types of gantries
will be presented here. In order to ease the search for an optical solution of the problem, the principle of
beam line inversion (BLI) will be applied here. The reasons for this are the following facts: It is much
easier to start with the requested beam properties at the end (values for x , x', y=x, y'=x', dp/p and D=D'=0)
and then apply some amplitude-limiting constraints in backward direction (heuristic trial and error method)
along the beam line and again D = D' = 0 after the last bending magnet before the rotation-point of the gantry.
Additional constraints are also x=y
and x'=y' (and preferably a double-waist)
at the rotation-point of the gantry. (To fullfil the later requirements see the notes about
Algebraic combination constraints).
Important inputs are the signs and strengths of the starting values (guesses) for the quadrupole lenses.
The different groups (2 to 5 quads) should always have alternating gradients. The sign of the 1st quad from the
end (near the 90 or 135 degrees bending magnet) is given by keeping primarily the most critical one of either
the x-amplitude, the y-amplitude or the dispersion nearby at a limited size. Of course, the different
parameters in these 3 files may be altered and adapted to your special needs. Care has then to be taken,
that the beam size values of the different fit-constraints (fit code digits i, j equal 1, 1 for x or 3, 3 for y)
are adapted manually and eventually moved to other z-coordinates.
References:
Other Proton Beam Therapy Application Examples: Degrader Design for a 250 MeV Medical Cyclotron Isotope Production Yield Optimization at PSI Double Scattering Computations for Proton Beam Spreading Last updated by Urs Rohrer on 13-Feb-2007 |